Learning Kernel Extended Dictionary for Face Recognition
A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2017-05, Vol.28 (5), p.1082-1094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A sparse representation classifier (SRC) and a kernel discriminant analysis (KDA) are two successful methods for face recognition. An SRC is good at dealing with occlusion, while a KDA does well in suppressing intraclass variations. In this paper, we propose kernel extended dictionary (KED) for face recognition, which provides an efficient way for combining KDA and SRC. We first learn several kernel principal components of occlusion variations as an occlusion model, which can represent the possible occlusion variations efficiently. Then, the occlusion model is projected by KDA to get the KED, which can be computed via the same kernel trick as new testing samples. Finally, we use structured SRC for classification, which is fast as only a small number of atoms are appended to the basic dictionary, and the feature dimension is low. We also extend KED to multikernel space to fuse different types of features at kernel level. Experiments are done on several large-scale data sets, demonstrating that not only does KED get impressive results for nonoccluded samples, but it also handles the occlusion well without overfitting, even with a single gallery sample per subject. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2016.2522431 |