A Gauss-Newton Method for the Synthesis of Periodic Outputs With Central Pattern Generators

It is assumed that a central pattern generator possesses an exponentially stable limit cycle, which originates a periodic output signal. We propose a method based on a Gauss-Newton iteration to determine the values of the neural coupling parameters that allows to approximate a given reference output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2014-07, Vol.25 (7), p.1394-1400
Hauptverfasser: Consolini, Luca, Lini, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is assumed that a central pattern generator possesses an exponentially stable limit cycle, which originates a periodic output signal. We propose a method based on a Gauss-Newton iteration to determine the values of the neural coupling parameters that allows to approximate a given reference output signal. We present two applications. The first is a ring network of Morris-Lecar neurons, where the output of the system is the sum of the membrane potential of all neurons. The second is a network of six neural cells for the generation of the leg movements of a hexapod.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2013.2288260