A Gauss-Newton Method for the Synthesis of Periodic Outputs With Central Pattern Generators
It is assumed that a central pattern generator possesses an exponentially stable limit cycle, which originates a periodic output signal. We propose a method based on a Gauss-Newton iteration to determine the values of the neural coupling parameters that allows to approximate a given reference output...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2014-07, Vol.25 (7), p.1394-1400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is assumed that a central pattern generator possesses an exponentially stable limit cycle, which originates a periodic output signal. We propose a method based on a Gauss-Newton iteration to determine the values of the neural coupling parameters that allows to approximate a given reference output signal. We present two applications. The first is a ring network of Morris-Lecar neurons, where the output of the system is the sum of the membrane potential of all neurons. The second is a network of six neural cells for the generation of the leg movements of a hexapod. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2013.2288260 |