DBTable: Leveraging Discriminative Bitsets for High-Performance Packet Classification
Packet classification, as a crucial function of networks, has been extensively investigated. In recent years, the rapid advancement of software-defined networking (SDN) has introduced new demands for packet classification, particularly in supporting dynamic rule updates and fast lookup. This paper p...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2024-12, Vol.32 (6), p.5232-5246 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Packet classification, as a crucial function of networks, has been extensively investigated. In recent years, the rapid advancement of software-defined networking (SDN) has introduced new demands for packet classification, particularly in supporting dynamic rule updates and fast lookup. This paper presents a novel structure called DBTable for efficient packet classification to achieve high overall performance. DBTable integrates the strengths of conventional packet classification methods and neural network concepts. Within DBTable, a straightforward indexing scheme is proposed to eliminate rule replication, thereby ensuring high update performance. Additionally, we propose an iterative method for generating a discriminative bitset (DBS) to evenly partition rules. By utilizing the DBS, rules can be efficiently mapped in a hash table, thus achieving exceptional lookup performance. Moreover, DBTable incorporates a hybrid structure to further optimize the worst-case lookup performance, primarily caused by data skewness. The experiment results on 12 256k rulesets show that, compared to seven state-of-the-art schemes, DBTable achieves an overall lookup speed improvement ranging from 1.53x to 7.29x, while maintaining the fastest update speed. |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2024.3452780 |