A Shifting Framework for Set Queries
Set queries are fundamental operations in computer networks. This paper addresses the fundamental problem of designing a probabilistic data structure that can quickly process set queries using a small amount of memory. We propose a shifting bloom filter (ShBF) framework for representing and querying...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2017-10, Vol.25 (5), p.3116-3131 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Set queries are fundamental operations in computer networks. This paper addresses the fundamental problem of designing a probabilistic data structure that can quickly process set queries using a small amount of memory. We propose a shifting bloom filter (ShBF) framework for representing and querying sets. We demonstrate the effectiveness of ShBF using three types of popular set queries: membership, association, and multiplicity queries. The key novelty of ShBF is on encoding the auxiliary information of a set element in a location offset. In contrast, prior BF-based set data structures allocate additional memory to store auxiliary information. We further extend our shifting framework from BF-based data structures to sketch-based data structures, which are widely used to store multiplicities of items. We conducted experiments using real-world network traces, and results show that ShBF significantly advances the state-of-the-art on all three types of set queries. |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2017.2730227 |