Cross-Layer Survivability in WDM-Based Networks

In layered networks, a single failure at a lower layer may cause multiple failures in the upper layers. As a result, traditional schemes that protect against single failures may not be effective in multilayer networks. In this paper, we introduce the problem of maximizing the connectivity of layered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2011-08, Vol.19 (4), p.1000-1013
Hauptverfasser: Lee, K., Modiano, E., Hyang-Won Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In layered networks, a single failure at a lower layer may cause multiple failures in the upper layers. As a result, traditional schemes that protect against single failures may not be effective in multilayer networks. In this paper, we introduce the problem of maximizing the connectivity of layered networks. We show that connectivity metrics in layered networks have significantly different meaning than their single-layer counterparts. Results that are fundamental to survivable single-layer network design, such as the Max-Flow Min-Cut Theorem, are no longer applicable to the layered setting. We propose new metrics to measure connectivity in layered networks and analyze their properties. We use one of the metrics, Min Cross Layer Cut, as the objective for the survivable lightpath routing problem and develop several algorithms to produce lightpath routings with high survivability. This allows the resulting cross-layer architecture to be resilient to failures between layers.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2010.2091426