Efficient Broadcasting Using Network Coding

We consider the problem of broadcasting in an ad hoc wireless network, where all nodes of the network are sources that want to transmit information to all other nodes. Our figure of merit is energy efficiency, a critical design parameter for wireless networks since it directly affects battery life a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2008-04, Vol.16 (2), p.450-463
Hauptverfasser: Fragouli, C., Widmer, J., Le Boudec, J.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of broadcasting in an ad hoc wireless network, where all nodes of the network are sources that want to transmit information to all other nodes. Our figure of merit is energy efficiency, a critical design parameter for wireless networks since it directly affects battery life and thus network lifetime. We prove that applying ideas from network coding allows to realize significant benefits in terms of energy efficiency for the problem of broadcasting, and propose very simple algorithms that allow to realize these benefits in practice. In particular, our theoretical analysis shows that network coding improves performance by a constant factor in fixed networks. We calculate this factor exactly for some canonical configurations. We then show that in networks where the topology dynamically changes, for example due to mobility, and where operations are restricted to simple distributed algorithms, network coding can offer improvements of a factor of , where is the number of nodes in the network. We use the insights gained from the theoretical analysis to propose low-complexity distributed algorithms for realistic wireless ad hoc scenarios, discuss a number of practical considerations, and evaluate our algorithms through packet level simulation.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2007.901080