Terahertz Metasurface-based Refractive Index Sensor for Amino Acid Detection: A Numerical Approach
A graphene disk metasurface-inspired refractive index sensor (RIS) with a subwavelength structure is numerically investigated to enhance the functionality of flexible metasurface in the biosensor sector. The main aim behind the sensor development is to detect amino acids with high sensitivity. The r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanobioscience 2023-07, Vol.22 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graphene disk metasurface-inspired refractive index sensor (RIS) with a subwavelength structure is numerically investigated to enhance the functionality of flexible metasurface in the biosensor sector. The main aim behind the sensor development is to detect amino acids with high sensitivity. The results in form of transmittance and the electric field intensity are carried out to verify the sensor's performance. The optimal design of the proposed sensor is also obtained by varying several structural parameters such as glass-based substrate thickness, the inner radius of the graphene disk metasurface, and the angle of incidence. The proposed sensor is also wide-angle insensitive for the angle of incidence ranging from 0° to 60°. Furthermore, the sensor's attributes are analyzed based on numerous parameters with an achieved maximum sensitivity of 333.33 GHz/RIU, Figure of Merit (FOM) of 3.11 RIU -1 , and Q-factor of 7.3 are achieved. As a result, these insights offered an enhanced direction for designing metasurface biosensors with a high Q-factor and FOM with high sensitivity for the detection of amino acids. |
---|---|
ISSN: | 1536-1241 1558-2639 |
DOI: | 10.1109/TNB.2022.3222446 |