Bioelectronic Imaging Array Based on Bacteriorhodopsin Film
A photoreceptor array that exploits the light sensitive bacteriorhodopsin (bR) films has been manufactured on a flexible indium-tin-oxide (ITO) coated plastic film using electrophoretic sedimentation technique (EPS). The effective sensing area of each photoreceptor is 2 × 2 mm 2 , separated by 1 mm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanobioscience 2008-12, Vol.7 (4), p.249-256 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 4 |
container_start_page | 249 |
container_title | IEEE transactions on nanobioscience |
container_volume | 7 |
creator | Wei Wei Wang Knopf, G.K. Bassi, A.S. |
description | A photoreceptor array that exploits the light sensitive bacteriorhodopsin (bR) films has been manufactured on a flexible indium-tin-oxide (ITO) coated plastic film using electrophoretic sedimentation technique (EPS). The effective sensing area of each photoreceptor is 2 × 2 mm 2 , separated by 1 mm and arranged in a 4 × 4 array. A switched integrator with gain on the order of 10 10 is used to amplify the signal to a suitable level. When exposed to light, the differential response characteristic is attributed to charge displacement and recombination within bR molecules, as well as loading effects of the attached amplifier. The peak spectral response occurs at 568 nm and is linear over the tested light power range of 200 ¿ W to 12 mW. The response remains linear at other tested wavelengths, but with reduced amplitude. Initial tests have indicated that responsivity among all photoreceptors is greater than 71% of the average value, 465.25 mV/mW. The differential nature of the signal generated by bR makes it a suitable sensing material for vision applications such as motion detection. The prototype array demonstrates this property by employing Reichardt's delay-and-correlate algorithm. Furthermore, fabricating sensor arrays on flexible substrates introduces a new design approach that enables non-planar imaging surfaces. |
doi_str_mv | 10.1109/TNB.2008.2011851 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNB_2008_2011851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4769372</ieee_id><sourcerecordid>1671333545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-33f959dc93ac2d6d739b024f84d4628a5fddd345002eebd374ad54d70980294f3</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_Agiu-7IMjiQb2sTt4Jnqz4KBS96Dmkm6xGdjc1aQ9-e1NaFDx4mRnIbwbCH6EjDJcYg756eRpdEgBVCsaK4w20izlXNRFUby5nKmpMGN5Bezl_AGApuN5GO1gToEqoXXQ9CtF3vpmnOISmGvf2LQxv1U1K9qsa2exdFYcyNHOfQkzv0cVZDkN1H7r-AG21tsv-cN330ev93cvtYz15fhjf3kzqhoOY15S2mmvXaGob4oSTVE-BsFYxxwRRlrfOOco4APF-6qhk1nHmJGgFRLOW7qPz1d1Zip8Ln-emD7nxXWcHHxfZKKG5VJKyIs_-lQQ4SAmqwIt_IRYSU0o544We_qEfcZGG8mGjMSFKMqwLghVqUsw5-dbMUuht-jIYzDIqU6Iyy6jMOqqycrK-u5j23v0urLMp4HgFgvf-55lJoakk9BurdJSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>912287419</pqid></control><display><type>magazinearticle</type><title>Bioelectronic Imaging Array Based on Bacteriorhodopsin Film</title><source>IEEE Electronic Library (IEL)</source><creator>Wei Wei Wang ; Knopf, G.K. ; Bassi, A.S.</creator><creatorcontrib>Wei Wei Wang ; Knopf, G.K. ; Bassi, A.S.</creatorcontrib><description>A photoreceptor array that exploits the light sensitive bacteriorhodopsin (bR) films has been manufactured on a flexible indium-tin-oxide (ITO) coated plastic film using electrophoretic sedimentation technique (EPS). The effective sensing area of each photoreceptor is 2 × 2 mm 2 , separated by 1 mm and arranged in a 4 × 4 array. A switched integrator with gain on the order of 10 10 is used to amplify the signal to a suitable level. When exposed to light, the differential response characteristic is attributed to charge displacement and recombination within bR molecules, as well as loading effects of the attached amplifier. The peak spectral response occurs at 568 nm and is linear over the tested light power range of 200 ¿ W to 12 mW. The response remains linear at other tested wavelengths, but with reduced amplitude. Initial tests have indicated that responsivity among all photoreceptors is greater than 71% of the average value, 465.25 mV/mW. The differential nature of the signal generated by bR makes it a suitable sensing material for vision applications such as motion detection. The prototype array demonstrates this property by employing Reichardt's delay-and-correlate algorithm. Furthermore, fabricating sensor arrays on flexible substrates introduces a new design approach that enables non-planar imaging surfaces.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2008.2011851</identifier><identifier>PMID: 19203868</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplification ; Arrays ; Bacteria ; Bacteriorhodopsin ; Bacteriorhodopsins - chemistry ; Bacteriorhodopsins - radiation effects ; bioelectronic photoreceptor array ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Detection ; Differential amplifiers ; Electronics - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Flexible manufacturing systems ; Image Interpretation, Computer-Assisted - instrumentation ; Image Interpretation, Computer-Assisted - methods ; Imaging ; imaging array ; Indium tin oxide ; ITO coated PET film ; Light ; Motion detection ; Nanostructure ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Optical arrays ; Photometry - instrumentation ; Photometry - methods ; Photoreceptors ; Plastic films ; Radiation Dosage ; Sensor arrays ; Sensors ; Signal generators ; Testing ; Transducers</subject><ispartof>IEEE transactions on nanobioscience, 2008-12, Vol.7 (4), p.249-256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-33f959dc93ac2d6d739b024f84d4628a5fddd345002eebd374ad54d70980294f3</citedby><cites>FETCH-LOGICAL-c506t-33f959dc93ac2d6d739b024f84d4628a5fddd345002eebd374ad54d70980294f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4769372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,792,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4769372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19203868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Wei Wang</creatorcontrib><creatorcontrib>Knopf, G.K.</creatorcontrib><creatorcontrib>Bassi, A.S.</creatorcontrib><title>Bioelectronic Imaging Array Based on Bacteriorhodopsin Film</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>A photoreceptor array that exploits the light sensitive bacteriorhodopsin (bR) films has been manufactured on a flexible indium-tin-oxide (ITO) coated plastic film using electrophoretic sedimentation technique (EPS). The effective sensing area of each photoreceptor is 2 × 2 mm 2 , separated by 1 mm and arranged in a 4 × 4 array. A switched integrator with gain on the order of 10 10 is used to amplify the signal to a suitable level. When exposed to light, the differential response characteristic is attributed to charge displacement and recombination within bR molecules, as well as loading effects of the attached amplifier. The peak spectral response occurs at 568 nm and is linear over the tested light power range of 200 ¿ W to 12 mW. The response remains linear at other tested wavelengths, but with reduced amplitude. Initial tests have indicated that responsivity among all photoreceptors is greater than 71% of the average value, 465.25 mV/mW. The differential nature of the signal generated by bR makes it a suitable sensing material for vision applications such as motion detection. The prototype array demonstrates this property by employing Reichardt's delay-and-correlate algorithm. Furthermore, fabricating sensor arrays on flexible substrates introduces a new design approach that enables non-planar imaging surfaces.</description><subject>Amplification</subject><subject>Arrays</subject><subject>Bacteria</subject><subject>Bacteriorhodopsin</subject><subject>Bacteriorhodopsins - chemistry</subject><subject>Bacteriorhodopsins - radiation effects</subject><subject>bioelectronic photoreceptor array</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Detection</subject><subject>Differential amplifiers</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flexible manufacturing systems</subject><subject>Image Interpretation, Computer-Assisted - instrumentation</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>imaging array</subject><subject>Indium tin oxide</subject><subject>ITO coated PET film</subject><subject>Light</subject><subject>Motion detection</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Optical arrays</subject><subject>Photometry - instrumentation</subject><subject>Photometry - methods</subject><subject>Photoreceptors</subject><subject>Plastic films</subject><subject>Radiation Dosage</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal generators</subject><subject>Testing</subject><subject>Transducers</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2008</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90UtLAzEQB_Agiu-7IMjiQb2sTt4Jnqz4KBS96Dmkm6xGdjc1aQ9-e1NaFDx4mRnIbwbCH6EjDJcYg756eRpdEgBVCsaK4w20izlXNRFUby5nKmpMGN5Bezl_AGApuN5GO1gToEqoXXQ9CtF3vpmnOISmGvf2LQxv1U1K9qsa2exdFYcyNHOfQkzv0cVZDkN1H7r-AG21tsv-cN330ev93cvtYz15fhjf3kzqhoOY15S2mmvXaGob4oSTVE-BsFYxxwRRlrfOOco4APF-6qhk1nHmJGgFRLOW7qPz1d1Zip8Ln-emD7nxXWcHHxfZKKG5VJKyIs_-lQQ4SAmqwIt_IRYSU0o544We_qEfcZGG8mGjMSFKMqwLghVqUsw5-dbMUuht-jIYzDIqU6Iyy6jMOqqycrK-u5j23v0urLMp4HgFgvf-55lJoakk9BurdJSt</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Wei Wei Wang</creator><creator>Knopf, G.K.</creator><creator>Bassi, A.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7T7</scope><scope>C1K</scope></search><sort><creationdate>20081201</creationdate><title>Bioelectronic Imaging Array Based on Bacteriorhodopsin Film</title><author>Wei Wei Wang ; Knopf, G.K. ; Bassi, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-33f959dc93ac2d6d739b024f84d4628a5fddd345002eebd374ad54d70980294f3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplification</topic><topic>Arrays</topic><topic>Bacteria</topic><topic>Bacteriorhodopsin</topic><topic>Bacteriorhodopsins - chemistry</topic><topic>Bacteriorhodopsins - radiation effects</topic><topic>bioelectronic photoreceptor array</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Detection</topic><topic>Differential amplifiers</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flexible manufacturing systems</topic><topic>Image Interpretation, Computer-Assisted - instrumentation</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>imaging array</topic><topic>Indium tin oxide</topic><topic>ITO coated PET film</topic><topic>Light</topic><topic>Motion detection</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Optical arrays</topic><topic>Photometry - instrumentation</topic><topic>Photometry - methods</topic><topic>Photoreceptors</topic><topic>Plastic films</topic><topic>Radiation Dosage</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal generators</topic><topic>Testing</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Wei Wang</creatorcontrib><creatorcontrib>Knopf, G.K.</creatorcontrib><creatorcontrib>Bassi, A.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Wei Wang</au><au>Knopf, G.K.</au><au>Bassi, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioelectronic Imaging Array Based on Bacteriorhodopsin Film</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>7</volume><issue>4</issue><spage>249</spage><epage>256</epage><pages>249-256</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>A photoreceptor array that exploits the light sensitive bacteriorhodopsin (bR) films has been manufactured on a flexible indium-tin-oxide (ITO) coated plastic film using electrophoretic sedimentation technique (EPS). The effective sensing area of each photoreceptor is 2 × 2 mm 2 , separated by 1 mm and arranged in a 4 × 4 array. A switched integrator with gain on the order of 10 10 is used to amplify the signal to a suitable level. When exposed to light, the differential response characteristic is attributed to charge displacement and recombination within bR molecules, as well as loading effects of the attached amplifier. The peak spectral response occurs at 568 nm and is linear over the tested light power range of 200 ¿ W to 12 mW. The response remains linear at other tested wavelengths, but with reduced amplitude. Initial tests have indicated that responsivity among all photoreceptors is greater than 71% of the average value, 465.25 mV/mW. The differential nature of the signal generated by bR makes it a suitable sensing material for vision applications such as motion detection. The prototype array demonstrates this property by employing Reichardt's delay-and-correlate algorithm. Furthermore, fabricating sensor arrays on flexible substrates introduces a new design approach that enables non-planar imaging surfaces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19203868</pmid><doi>10.1109/TNB.2008.2011851</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1241 |
ispartof | IEEE transactions on nanobioscience, 2008-12, Vol.7 (4), p.249-256 |
issn | 1536-1241 1558-2639 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNB_2008_2011851 |
source | IEEE Electronic Library (IEL) |
subjects | Amplification Arrays Bacteria Bacteriorhodopsin Bacteriorhodopsins - chemistry Bacteriorhodopsins - radiation effects bioelectronic photoreceptor array Biosensing Techniques - instrumentation Biosensing Techniques - methods Detection Differential amplifiers Electronics - instrumentation Equipment Design Equipment Failure Analysis Flexible manufacturing systems Image Interpretation, Computer-Assisted - instrumentation Image Interpretation, Computer-Assisted - methods Imaging imaging array Indium tin oxide ITO coated PET film Light Motion detection Nanostructure Nanotechnology - instrumentation Nanotechnology - methods Optical arrays Photometry - instrumentation Photometry - methods Photoreceptors Plastic films Radiation Dosage Sensor arrays Sensors Signal generators Testing Transducers |
title | Bioelectronic Imaging Array Based on Bacteriorhodopsin Film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioelectronic%20Imaging%20Array%20Based%20on%20Bacteriorhodopsin%20Film&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Wei%20Wei%20Wang&rft.date=2008-12-01&rft.volume=7&rft.issue=4&rft.spage=249&rft.epage=256&rft.pages=249-256&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2008.2011851&rft_dat=%3Cproquest_RIE%3E1671333545%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912287419&rft_id=info:pmid/19203868&rft_ieee_id=4769372&rfr_iscdi=true |