Modeling of Coplanar Interdigital Capacitor for Microwave Microfluidic Application

Due to its noninvasive property, the interdigital capacitor (IDC) has been applied in dielectric liquid detection and characterization. In order to integrate the IDC sensor on a lab-on-chip, it is often required to minimize and optimize the sensor for sensitive and efficient performance. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2019-07, Vol.67 (7), p.2674-2683
Hauptverfasser: Bao, Xiue, Ocket, Ilja, Bao, Juncheng, Liu, Zhuangzhuang, Puers, Bob, Schreurs, Dominique M. M.-P., Nauwelaers, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to its noninvasive property, the interdigital capacitor (IDC) has been applied in dielectric liquid detection and characterization. In order to integrate the IDC sensor on a lab-on-chip, it is often required to minimize and optimize the sensor for sensitive and efficient performance. However, the conventional numerical simulation approach is quite time-consuming. Therefore, an efficient analytical method is proposed herein, leading to accurate capacitance and conductance expressions of an arbitrary multilayer-structured IDC. The model is validated with practical measurements of a series of coplanar waveguide (CPW) structure-based IDCs. In addition, an accurate characterization function, which relates the IDC capacitance and conductance to the complex permittivity of a material loaded on the top of the IDC sensing area, is obtained. The characterization function shows good agreement with the finite-element method (FEM) simulation results, which demonstrates the capability of the IDC sensor in dielectric spectroscopy measurements of \mu \text{L} and even nL liquids.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2019.2916871