Localized Rapid Heating by Low-Power Solid-State Microwave Drill

This paper presents a theoretical and experimental study of a locally induced microwave-heating effect implemented by a low-power transistor-based microwave drill. A coupled thermal-electromagnetic model shows that the thermal-runaway instability can be excited also by relatively low microwave power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2012-08, Vol.60 (8), p.2665-2672
Hauptverfasser: Meir, Y., Jerby, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a theoretical and experimental study of a locally induced microwave-heating effect implemented by a low-power transistor-based microwave drill. A coupled thermal-electromagnetic model shows that the thermal-runaway instability can be excited also by relatively low microwave power, in the range ~ 10-100 W, hence by solid-state sources rather than magnetrons. Local melting then occurs in a millimeter scale within seconds in various materials, such as glass, ceramics, basalts, and plastics. The experimental device employs an LDMOS transistor in an oscillator scheme, feeding a miniature microwave-drill applicator. The experimental results verify the rapid heating effect, similarly to the theoretical model. These findings may lead to various material-processing applications of local microwave heating implemented by solid-state devices, including local melting (for surface treatments, chemical reactions, joining, etc.), delicate drilling (e.g., of bones in orthopedic operations), local evaporation, ignition, and plasma ejection (e.g., in microwave-induced breakdown spectroscopy (MIBS) for material identification).
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2012.2198233