Frequency-Domain Analysis of Super-Regenerative Amplifiers
Since its invention in 1922, the super-regenerative amplifier (SRA) has been used in a variety of short-range, low-power, and/or low-cost wireless systems due to its simple implementation and excellent performance for a given power budget. Growing demand for ultralow-power receivers for short-range...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2009-12, Vol.57 (12), p.2882-2894 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since its invention in 1922, the super-regenerative amplifier (SRA) has been used in a variety of short-range, low-power, and/or low-cost wireless systems due to its simple implementation and excellent performance for a given power budget. Growing demand for ultralow-power receivers for short-range radios has recently reawakened an interest in the theory and design of SRAs. Building on recent work and using reasonable assumptions and approximations, we present a frequency-domain model for analyzing SRAs. We then use these models to predict the response of an SRA to arbitrary deterministic and stochastic signals including sinusoids, pulsed-sinusoids, and additive white Gaussian noise. Using the results, we present formulas for calculating the sensitivity and selectivity of SRAs. We also introduce the concept of a trigger-time that is particularly useful for accurately determining the optimal threshold in on-off keying (OOK) receivers and helps avoid the problems introduced by nonlinearity in SRAs. Finally, we present a prototype OOK SRA that achieves a sensitivity of -90 dBm at a bit rate of 300 kbps (BER of 10 -3 ) while consuming 500 ¿W, and show that its measured sensitivity matches theory within 1 dB. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2009.2033843 |