Tamper-Proofing Video With Hierarchical Attention Autoencoder Hashing on Blockchain

We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we introduce a novel deep network architecture using a hierarchical attention autoencoder (HAAE) to compute temporal content hashes (TCHs) from minutes or hour-long au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2020-11, Vol.22 (11), p.2858-2872
Hauptverfasser: Bui, Tu, Cooper, Daniel, Collomosse, John, Bell, Mark, Green, Alex, Sheridan, John, Higgins, Jez, Das, Arindra, Keller, Jared Robert, Thereaux, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we introduce a novel deep network architecture using a hierarchical attention autoencoder (HAAE) to compute temporal content hashes (TCHs) from minutes or hour-long audio-visual streams. Our TCHs are sensitive to accidental or malicious content modification (tampering). The focus of our self-supervised HAAE is to guard against content modification such as frame truncation or corruption but ensure invariance against format shift ( i.e. codec change). This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, United States of America, Estonia, Australia and Norway participated.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2020.2967640