Cross-Domain Feature Learning in Multimedia
In the Web 2.0 era, a huge number of media data, such as text, image/video, and social interaction information, have been generated on the social media sites (e.g., Facebook, Google, Flickr, and YouTube). These media data can be effectively adopted for many applications (e.g., image/video annotation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2015-01, Vol.17 (1), p.64-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Web 2.0 era, a huge number of media data, such as text, image/video, and social interaction information, have been generated on the social media sites (e.g., Facebook, Google, Flickr, and YouTube). These media data can be effectively adopted for many applications (e.g., image/video annotation, image/video retrieval, and event classification) in multimedia. However, it is difficult to design an effective feature representation to describe these data because they have multi-modal property (e.g., text, image, video, and audio) and multi-domain property (e.g., Flickr, Google, and YouTube). To deal with these issues, we propose a novel cross-domain feature learning (CDFL) algorithm based on stacked denoising auto-encoders. By introducing the modal correlation constraint and the cross-domain constraint in conventional auto-encoder, our CDFL can maximize the correlations among different modalities and extract domain invariant semantic features simultaneously. To evaluate our CDFL algorithm , we apply it to three important applications: sentiment classification, spam filtering, and event classification. Comprehensive evaluations demonstrate the encouraging performance of the proposed approach. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2014.2375793 |