Super-Resolution of Face Images Using Kernel PCA-Based Prior
We present a learning-based method to super-resolve face images using a kernel principal component analysis-based prior model. A prior probability is formulated based on the energy lying outside the span of principal components identified in a higher-dimensional feature space. This is used to regula...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2007-06, Vol.9 (4), p.888-892 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a learning-based method to super-resolve face images using a kernel principal component analysis-based prior model. A prior probability is formulated based on the energy lying outside the span of principal components identified in a higher-dimensional feature space. This is used to regularize the reconstruction of the high-resolution image. We demonstrate with experiments that including higher-order correlations results in significant improvements |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2007.893346 |