Super-Resolution of Face Images Using Kernel PCA-Based Prior

We present a learning-based method to super-resolve face images using a kernel principal component analysis-based prior model. A prior probability is formulated based on the energy lying outside the span of principal components identified in a higher-dimensional feature space. This is used to regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2007-06, Vol.9 (4), p.888-892
Hauptverfasser: Ayan Chakrabarti, Rajagopalan, A.N., Rama Chellappa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a learning-based method to super-resolve face images using a kernel principal component analysis-based prior model. A prior probability is formulated based on the energy lying outside the span of principal components identified in a higher-dimensional feature space. This is used to regularize the reconstruction of the high-resolution image. We demonstrate with experiments that including higher-order correlations results in significant improvements
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2007.893346