A Magnetic Resonance Imaging Surface Coil Transceiver Employing a Metasurface for 1.5T Applications
A capacitive impedance metasurface combined with a transceiver coil to improve the radio frequency magnetic field for 1.5T magnetic resonance imaging applications is presented. The novel transceiver provides localized enhancement in magnetic flux density when compared to a transceiver coil alone by...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-04, Vol.39 (4), p.1085-1093 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A capacitive impedance metasurface combined with a transceiver coil to improve the radio frequency magnetic field for 1.5T magnetic resonance imaging applications is presented. The novel transceiver provides localized enhancement in magnetic flux density when compared to a transceiver coil alone by incorporating an electrically small metasurface using an interdigital capacitance approach. Full field simulations employing the metasurface show a significant improvement in magnetic flux density inside a homogeneous dielectric phantom, which is also shown to perform well for a range of depths into the phantom. The concept was experimentally demonstrated through vector network analyzer measurements and images have been taken using a 1.5T MRI scanner. The results show there is a 216% improvement in transmission efficiency, a 133% improvement in receiver signal-to-noise-ratio (SNR), and a 415% improvement in transceiver SNR for a particular transmission power when compared against a surface coil positioned at the same distance from the phantom, where these improvements are the maximum observed during experiments. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2019.2942194 |