Tomographic image reconstruction based on a content-adaptive mesh model

In this paper, we explore the use of a content-adaptive mesh model (CAMM) for tomographic image reconstruction. In the proposed framework, the image to be reconstructed is first represented by a mesh model, an efficient image description based on nonuniform sampling. In the CAMM, image samples (repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2004-02, Vol.23 (2), p.202-212
Hauptverfasser: Brankov, J.G., Yongyi Yang, Wernick, M.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we explore the use of a content-adaptive mesh model (CAMM) for tomographic image reconstruction. In the proposed framework, the image to be reconstructed is first represented by a mesh model, an efficient image description based on nonuniform sampling. In the CAMM, image samples (represented as mesh nodes) are placed most densely in image regions having fine detail. Tomographic image reconstruction in the mesh domain is performed by maximum-likelihood (ML) or maximum a posteriori (MAP) estimation of the nodal values from the measured data. A CAMM greatly reduces the number of unknown parameters to be determined, leading to improved image quality and reduced computation time. We demonstrated the method in our experiments using simulated gated single photon emission computed tomography (SPECT) cardiac-perfusion images. A channelized Hotelling observer (CHO) was used to evaluate the detectability of perfusion defects in the reconstructed images, a task-based measure of image quality. A minimum description length (MDL) criterion was also used to evaluate the effect of the representation size. In our application, both MDL and CHO suggested that the optimal number of mesh nodes is roughly five to seven times smaller than the number of projection bins. When compared to several commonly used methods for image reconstruction, the proposed approach achieved the best performance, in terms of defect detection and computation time. The research described in this paper establishes a foundation for future development of a (four-dimensional) space-time reconstruction framework for image sequences in which a built-in deformable mesh model is used to track the image motion.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2003.822822