An Enhanced Fusion Algorithm With Empirical Thermoelectric Models for Sensorless Temperature Estimation of Li-ion Battery Cells

An enhanced dual extended Kalman filter method is presented in this article for estimating and tracking the state-of-temperature of lithium-ion battery cells. A simple but effective dynamic and measurement empirical fit models are proposed and utilized to estimate the state-of-temperature concurrent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2023-04, Vol.28 (2), p.1-11
Hauptverfasser: Sajid, Mahroo, Hussein, Ala A., Wadi, Ali, Abdel-Hafez, Mamoun F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An enhanced dual extended Kalman filter method is presented in this article for estimating and tracking the state-of-temperature of lithium-ion battery cells. A simple but effective dynamic and measurement empirical fit models are proposed and utilized to estimate the state-of-temperature concurrently with the state-of-charge. The proposed dual estimator improves the estimation accuracy of the temperature state by accounting for the variations in the state-of-charge. To test the performance of the proposed estimation method, two independent lithium-ion battery cell datasets were used to derive the empirical models and run the estimation algorithm. The obtained results show a promising performance of the estimation method in terms of the high estimation accuracy even in the case when the measurement contains high-magnitude noise or when the estimation algorithm is inaccurately initialized. The proposed models and the estimation algorithm are derived and experimentally tested in this article.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2023.3235726