USDE-Based Sliding Mode Control for Servo Mechanisms With Unknown System Dynamics

This article proposes an unknown system dynamics estimator (USDE) based sliding mode control for servo mechanisms with unknown dynamics and modeling uncertainties. An invariant manifold is first constructed by introducing an auxiliary variable based on a first-order low-pass filter. This is used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2020-04, Vol.25 (2), p.1056-1066
Hauptverfasser: Wang, Shubo, Tao, Liang, Chen, Qiang, Na, Jing, Ren, Xuemei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes an unknown system dynamics estimator (USDE) based sliding mode control for servo mechanisms with unknown dynamics and modeling uncertainties. An invariant manifold is first constructed by introducing an auxiliary variable based on a first-order low-pass filter. This is used to design a USDE with only one tuning parameter (i.e., time constant for the filter) and a simpler structure than other estimators. The USDE is used to compensate for the effect of the lumped unknown system dynamics since it can be easily incorporated into control synthesis. Moreover, to avoid the chattering phenomenon in the conventional sliding mode control methods, a novel reaching law is designed based on hyperbolic functions to guarantee that the sliding mode variable infinitely approaches to the equilibrium point instead of crossing it. Consequently, the fast convergence and chattering-free property can be achieved simultaneously. Simulations and experiments are provided to validate the effectiveness and superior performance of the proposed method.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2020.2971541