Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance

Individuals with poststroke hemiparesis often exhibit mobility deficits, particularly during tasks requiring high lower limb torques. The sit-to-stand transition is consistently marked by asymmetrical weight-bearing between the paretic and unaffected legs. One way to improve characteristics of strok...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2017-08, Vol.22 (4), p.1695-1704
Hauptverfasser: Shepherd, Max K., Rouse, Elliott J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individuals with poststroke hemiparesis often exhibit mobility deficits, particularly during tasks requiring high lower limb torques. The sit-to-stand transition is consistently marked by asymmetrical weight-bearing between the paretic and unaffected legs. One way to improve characteristics of stroke sit-to-stand may be to provide assistive knee extension torque with a powered exoskeleton. To perform research on the biomechanical effects of assisting sit-to-stand, a unilateral powered knee exoskeleton is required, which can accurately control torque. This paper introduces a novel series elastic actuator capable of producing the full torques and speeds required for sit-to-stand (80 Nm, 3 rad/s). It utilizes a unique transmission configuration with a series fiberglass beam spring that improves torque-control and reduces output impedance. The actuator is incorporated into a unilateral orthosis and a high-level sit-to-stand controller is implemented. A small validation study with three able-bodied subjects performing sit-to-stand is presented, demonstrating the ability to appropriately provide assistance.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2017.2704521