Model-Based and Data-Driven Fault Detection Performance for a Small UAV
Fault detection and identification algorithms may rely on knowledge of underlying system dynamics while some eschew this modeling in favor of data-driven anomaly detection. This paper considers model-based residual generation and data-driven anomaly detection for a small, low-cost unmanned aerial ve...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2013-08, Vol.18 (4), p.1300-1309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fault detection and identification algorithms may rely on knowledge of underlying system dynamics while some eschew this modeling in favor of data-driven anomaly detection. This paper considers model-based residual generation and data-driven anomaly detection for a small, low-cost unmanned aerial vehicle using both types of approaches and applies those algorithms to experimental faulted and unfaulted flight-test data. The model-based fault detection strategy uses robust linear filtering methods to reject exogenous disturbances, e.g., wind, and provide robustness to model errors. The data-driven algorithm is developed to operate exclusively on raw flight-test data without detailed system knowledge. The detection performance of these complementary, but different, methods is compared. |
---|---|
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2013.2258678 |