Highly Parallelized Contour Integral Method for Computing Resonant Modes of Lossy Cavities
In this article, we address an efficient solver of the Maxwell eigenvalue problem for lossy cavity resonators. The curl-curl equation for the electric field is discretized using curved tetrahedral incomplete quadratic finite elements, resulting in a nonlinear eigenvalue formulation. The eigenvalue p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2020-01, Vol.56 (1), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we address an efficient solver of the Maxwell eigenvalue problem for lossy cavity resonators. The curl-curl equation for the electric field is discretized using curved tetrahedral incomplete quadratic finite elements, resulting in a nonlinear eigenvalue formulation. The eigenvalue problem is efficiently solved using a contour integral method (CIM). This method enables an accurate computation of all eigenvalues within a predefined region and is implemented in a highly parallelized framework to enhance the performance of the algorithm. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2019.2948967 |