A Polymer-Based Air Gap Length Prediction Method With Current Injection and Fuzzy Logic Observer

In this paper, an approach combining current pulses injection and fuzzy logic observer to measure the air gap length of linear machines is proposed. A polymer enclosed by a coil is produced and selected as the test object. The characteristics and production process for the polymer is introduced and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-11, Vol.53 (11), p.1-4
Hauptverfasser: Yu Zou, Cheng, K. W. Eric, Cheung, Norbert C., Pan, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an approach combining current pulses injection and fuzzy logic observer to measure the air gap length of linear machines is proposed. A polymer enclosed by a coil is produced and selected as the test object. The characteristics and production process for the polymer is introduced and its magnetic feature has been studied. Injecting current pulses is used to calculate the self-inductance of the coil fixed on the cores that is directly influenced by the air gap length from the polymer. By using a fuzzy logic observer, the air gap length can be estimated precisely according to the variations of the self-inductance. Experimental results show the effectiveness of the proposed measurement method and the results prove that the proposed method is suitable for the air gap measurement for linear machines.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2017.2707072