Magnitude and Orientation Error Correction of a Superimposed Spatial Universal Rotating Magnetic Vector

Based on the orthogonal superposition theorem of three alternating magnetic components, a universal uniform magnetic spin vector is superimposed using tri-axial Helmholtz coils, achieving successive digital control of the orientation, the rotational speed, and the magnetic flux density of the univer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2016-05, Vol.52 (5), p.1-9
Hauptverfasser: Zhang, Yongshun, Su, Zhongkan, Chi, Minglu, Huang, Yunkui, Wang, Dianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the orthogonal superposition theorem of three alternating magnetic components, a universal uniform magnetic spin vector is superimposed using tri-axial Helmholtz coils, achieving successive digital control of the orientation, the rotational speed, and the magnetic flux density of the universal magnetic spin vector. For increasing the magnitude and orientation accuracy of the magnetic spin vector, this paper presents a mathematical model associated with the magnitude error and orientation error of the universal magnetic spin vector, along with a double error compensation method for the magnitude and orientation of the universal magnetic spin vector superimposed by three alternating magnetic components. The double error compensation method includes the current magnitude compensation by three different structural coefficients of tri-axial Helmholtz coils and the current phase compensation by two relative phase differences under linear polarization. The results have shown that the double compensation method can increase the magnitude and orientation accuracy of the rotating magnetic vector effectively, which would achieve an accurate posture adjustment and steering control on the capsule robots in curving environment.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2016.2517598