The behavior of pinned layers using a high-field transfer curve
In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2005-10, Vol.41 (10), p.2950-2952 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2952 |
---|---|
container_issue | 10 |
container_start_page | 2950 |
container_title | IEEE transactions on magnetics |
container_volume | 41 |
creator | Sangmun Oh Nishioka, K. Umezaki, H. Tanaka, H. Seki, T. Sasaki, S. Ohtsu, T. Kataoka, K. Furusawa, K. |
description | In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/>E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor. |
doi_str_mv | 10.1109/TMAG.2005.855323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2005_855323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1519170</ieee_id><sourcerecordid>2351319071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD_ugpcg6G3rJJtskpMU8QsUL_Uckuxsm7Lu1qQr-O_d0oLgaRjmeV-Gh5ALBlPGwNzO32ZPUw4gp1rKkpcHZMKMYAVAZQ7JBIDpwohKHJOTnFfjKiSDCbmbL5F6XLrv2CfaN3Qduw5r2rofTJkOOXYL6ugyLpZFE7Gt6Sa5LjeYaBjSN56Ro8a1Gc_385R8PD7M75-L1_enl_vZaxEEU5vC-FAqyY3ihoFyyhghfal4JWovGVcCa88b6TWibpDVtZaV8164oLQP2pWn5GbXu07914B5Yz9jDti2rsN-yJZrxrg0ZgSv_oGrfkjd-JvVlRIVAKgRgh0UUp9zwsauU_x06ccysFuddqvTbnXanc4xcr3vdTm4thkthJj_coqXYEo5cpc7LiLi31kywxSUv4r5fGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867460007</pqid></control><display><type>article</type><title>The behavior of pinned layers using a high-field transfer curve</title><source>IEEE Electronic Library (IEL)</source><creator>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</creator><creatorcontrib>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</creatorcontrib><description>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/>E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2005.855323</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anisotropic energy ; Anisotropic magnetoresistance ; antiferromagnet ; Antiferromagnetic materials ; Behavior ; Couplings ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Giant magnetoresistance ; giant magnetoresistive (GMR) ; high-field transfer curve ; Magnetic anisotropy ; Magnetic devices ; Magnetism ; Magnetostriction ; Magnetostrictive devices ; Materials science ; Other topics in materials science ; Perpendicular magnetic anisotropy ; Physics ; pinned layers ; quasi-static tester ; Stress</subject><ispartof>IEEE transactions on magnetics, 2005-10, Vol.41 (10), p.2950-2952</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</citedby><cites>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1519170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23911,23912,25120,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1519170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17230935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangmun Oh</creatorcontrib><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Umezaki, H.</creatorcontrib><creatorcontrib>Tanaka, H.</creatorcontrib><creatorcontrib>Seki, T.</creatorcontrib><creatorcontrib>Sasaki, S.</creatorcontrib><creatorcontrib>Ohtsu, T.</creatorcontrib><creatorcontrib>Kataoka, K.</creatorcontrib><creatorcontrib>Furusawa, K.</creatorcontrib><title>The behavior of pinned layers using a high-field transfer curve</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/>E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</description><subject>Anisotropic energy</subject><subject>Anisotropic magnetoresistance</subject><subject>antiferromagnet</subject><subject>Antiferromagnetic materials</subject><subject>Behavior</subject><subject>Couplings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Giant magnetoresistance</subject><subject>giant magnetoresistive (GMR)</subject><subject>high-field transfer curve</subject><subject>Magnetic anisotropy</subject><subject>Magnetic devices</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>Magnetostrictive devices</subject><subject>Materials science</subject><subject>Other topics in materials science</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>pinned layers</subject><subject>quasi-static tester</subject><subject>Stress</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWD_ugpcg6G3rJJtskpMU8QsUL_Uckuxsm7Lu1qQr-O_d0oLgaRjmeV-Gh5ALBlPGwNzO32ZPUw4gp1rKkpcHZMKMYAVAZQ7JBIDpwohKHJOTnFfjKiSDCbmbL5F6XLrv2CfaN3Qduw5r2rofTJkOOXYL6ugyLpZFE7Gt6Sa5LjeYaBjSN56Ro8a1Gc_385R8PD7M75-L1_enl_vZaxEEU5vC-FAqyY3ihoFyyhghfal4JWovGVcCa88b6TWibpDVtZaV8164oLQP2pWn5GbXu07914B5Yz9jDti2rsN-yJZrxrg0ZgSv_oGrfkjd-JvVlRIVAKgRgh0UUp9zwsauU_x06ccysFuddqvTbnXanc4xcr3vdTm4thkthJj_coqXYEo5cpc7LiLi31kywxSUv4r5fGA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Sangmun Oh</creator><creator>Nishioka, K.</creator><creator>Umezaki, H.</creator><creator>Tanaka, H.</creator><creator>Seki, T.</creator><creator>Sasaki, S.</creator><creator>Ohtsu, T.</creator><creator>Kataoka, K.</creator><creator>Furusawa, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20051001</creationdate><title>The behavior of pinned layers using a high-field transfer curve</title><author>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic energy</topic><topic>Anisotropic magnetoresistance</topic><topic>antiferromagnet</topic><topic>Antiferromagnetic materials</topic><topic>Behavior</topic><topic>Couplings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Giant magnetoresistance</topic><topic>giant magnetoresistive (GMR)</topic><topic>high-field transfer curve</topic><topic>Magnetic anisotropy</topic><topic>Magnetic devices</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>Magnetostrictive devices</topic><topic>Materials science</topic><topic>Other topics in materials science</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>pinned layers</topic><topic>quasi-static tester</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Sangmun Oh</creatorcontrib><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Umezaki, H.</creatorcontrib><creatorcontrib>Tanaka, H.</creatorcontrib><creatorcontrib>Seki, T.</creatorcontrib><creatorcontrib>Sasaki, S.</creatorcontrib><creatorcontrib>Ohtsu, T.</creatorcontrib><creatorcontrib>Kataoka, K.</creatorcontrib><creatorcontrib>Furusawa, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sangmun Oh</au><au>Nishioka, K.</au><au>Umezaki, H.</au><au>Tanaka, H.</au><au>Seki, T.</au><au>Sasaki, S.</au><au>Ohtsu, T.</au><au>Kataoka, K.</au><au>Furusawa, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The behavior of pinned layers using a high-field transfer curve</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>41</volume><issue>10</issue><spage>2950</spage><epage>2952</epage><pages>2950-2952</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/>E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2005.855323</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2005-10, Vol.41 (10), p.2950-2952 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2005_855323 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropic energy Anisotropic magnetoresistance antiferromagnet Antiferromagnetic materials Behavior Couplings Cross-disciplinary physics: materials science rheology Exact sciences and technology Giant magnetoresistance giant magnetoresistive (GMR) high-field transfer curve Magnetic anisotropy Magnetic devices Magnetism Magnetostriction Magnetostrictive devices Materials science Other topics in materials science Perpendicular magnetic anisotropy Physics pinned layers quasi-static tester Stress |
title | The behavior of pinned layers using a high-field transfer curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20behavior%20of%20pinned%20layers%20using%20a%20high-field%20transfer%20curve&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Sangmun%20Oh&rft.date=2005-10-01&rft.volume=41&rft.issue=10&rft.spage=2950&rft.epage=2952&rft.pages=2950-2952&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2005.855323&rft_dat=%3Cproquest_RIE%3E2351319071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867460007&rft_id=info:pmid/&rft_ieee_id=1519170&rfr_iscdi=true |