The behavior of pinned layers using a high-field transfer curve

In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2005-10, Vol.41 (10), p.2950-2952
Hauptverfasser: Sangmun Oh, Nishioka, K., Umezaki, H., Tanaka, H., Seki, T., Sasaki, S., Ohtsu, T., Kataoka, K., Furusawa, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2952
container_issue 10
container_start_page 2950
container_title IEEE transactions on magnetics
container_volume 41
creator Sangmun Oh
Nishioka, K.
Umezaki, H.
Tanaka, H.
Seki, T.
Sasaki, S.
Ohtsu, T.
Kataoka, K.
Furusawa, K.
description In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/>E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.
doi_str_mv 10.1109/TMAG.2005.855323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2005_855323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1519170</ieee_id><sourcerecordid>2351319071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD_ugpcg6G3rJJtskpMU8QsUL_Uckuxsm7Lu1qQr-O_d0oLgaRjmeV-Gh5ALBlPGwNzO32ZPUw4gp1rKkpcHZMKMYAVAZQ7JBIDpwohKHJOTnFfjKiSDCbmbL5F6XLrv2CfaN3Qduw5r2rofTJkOOXYL6ugyLpZFE7Gt6Sa5LjeYaBjSN56Ro8a1Gc_385R8PD7M75-L1_enl_vZaxEEU5vC-FAqyY3ihoFyyhghfal4JWovGVcCa88b6TWibpDVtZaV8164oLQP2pWn5GbXu07914B5Yz9jDti2rsN-yJZrxrg0ZgSv_oGrfkjd-JvVlRIVAKgRgh0UUp9zwsauU_x06ccysFuddqvTbnXanc4xcr3vdTm4thkthJj_coqXYEo5cpc7LiLi31kywxSUv4r5fGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867460007</pqid></control><display><type>article</type><title>The behavior of pinned layers using a high-field transfer curve</title><source>IEEE Electronic Library (IEL)</source><creator>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</creator><creatorcontrib>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</creatorcontrib><description>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/&gt;E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2005.855323</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anisotropic energy ; Anisotropic magnetoresistance ; antiferromagnet ; Antiferromagnetic materials ; Behavior ; Couplings ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Giant magnetoresistance ; giant magnetoresistive (GMR) ; high-field transfer curve ; Magnetic anisotropy ; Magnetic devices ; Magnetism ; Magnetostriction ; Magnetostrictive devices ; Materials science ; Other topics in materials science ; Perpendicular magnetic anisotropy ; Physics ; pinned layers ; quasi-static tester ; Stress</subject><ispartof>IEEE transactions on magnetics, 2005-10, Vol.41 (10), p.2950-2952</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</citedby><cites>FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1519170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23911,23912,25120,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1519170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17230935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangmun Oh</creatorcontrib><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Umezaki, H.</creatorcontrib><creatorcontrib>Tanaka, H.</creatorcontrib><creatorcontrib>Seki, T.</creatorcontrib><creatorcontrib>Sasaki, S.</creatorcontrib><creatorcontrib>Ohtsu, T.</creatorcontrib><creatorcontrib>Kataoka, K.</creatorcontrib><creatorcontrib>Furusawa, K.</creatorcontrib><title>The behavior of pinned layers using a high-field transfer curve</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/&gt;E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</description><subject>Anisotropic energy</subject><subject>Anisotropic magnetoresistance</subject><subject>antiferromagnet</subject><subject>Antiferromagnetic materials</subject><subject>Behavior</subject><subject>Couplings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Giant magnetoresistance</subject><subject>giant magnetoresistive (GMR)</subject><subject>high-field transfer curve</subject><subject>Magnetic anisotropy</subject><subject>Magnetic devices</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>Magnetostrictive devices</subject><subject>Materials science</subject><subject>Other topics in materials science</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>pinned layers</subject><subject>quasi-static tester</subject><subject>Stress</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWD_ugpcg6G3rJJtskpMU8QsUL_Uckuxsm7Lu1qQr-O_d0oLgaRjmeV-Gh5ALBlPGwNzO32ZPUw4gp1rKkpcHZMKMYAVAZQ7JBIDpwohKHJOTnFfjKiSDCbmbL5F6XLrv2CfaN3Qduw5r2rofTJkOOXYL6ugyLpZFE7Gt6Sa5LjeYaBjSN56Ro8a1Gc_385R8PD7M75-L1_enl_vZaxEEU5vC-FAqyY3ihoFyyhghfal4JWovGVcCa88b6TWibpDVtZaV8164oLQP2pWn5GbXu07914B5Yz9jDti2rsN-yJZrxrg0ZgSv_oGrfkjd-JvVlRIVAKgRgh0UUp9zwsauU_x06ccysFuddqvTbnXanc4xcr3vdTm4thkthJj_coqXYEo5cpc7LiLi31kywxSUv4r5fGA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Sangmun Oh</creator><creator>Nishioka, K.</creator><creator>Umezaki, H.</creator><creator>Tanaka, H.</creator><creator>Seki, T.</creator><creator>Sasaki, S.</creator><creator>Ohtsu, T.</creator><creator>Kataoka, K.</creator><creator>Furusawa, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20051001</creationdate><title>The behavior of pinned layers using a high-field transfer curve</title><author>Sangmun Oh ; Nishioka, K. ; Umezaki, H. ; Tanaka, H. ; Seki, T. ; Sasaki, S. ; Ohtsu, T. ; Kataoka, K. ; Furusawa, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9bc37529729107a79945b37264db51274edb2f5b8ee8fe1dd856abb4ac78bc8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic energy</topic><topic>Anisotropic magnetoresistance</topic><topic>antiferromagnet</topic><topic>Antiferromagnetic materials</topic><topic>Behavior</topic><topic>Couplings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Giant magnetoresistance</topic><topic>giant magnetoresistive (GMR)</topic><topic>high-field transfer curve</topic><topic>Magnetic anisotropy</topic><topic>Magnetic devices</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>Magnetostrictive devices</topic><topic>Materials science</topic><topic>Other topics in materials science</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>pinned layers</topic><topic>quasi-static tester</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Sangmun Oh</creatorcontrib><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Umezaki, H.</creatorcontrib><creatorcontrib>Tanaka, H.</creatorcontrib><creatorcontrib>Seki, T.</creatorcontrib><creatorcontrib>Sasaki, S.</creatorcontrib><creatorcontrib>Ohtsu, T.</creatorcontrib><creatorcontrib>Kataoka, K.</creatorcontrib><creatorcontrib>Furusawa, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sangmun Oh</au><au>Nishioka, K.</au><au>Umezaki, H.</au><au>Tanaka, H.</au><au>Seki, T.</au><au>Sasaki, S.</au><au>Ohtsu, T.</au><au>Kataoka, K.</au><au>Furusawa, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The behavior of pinned layers using a high-field transfer curve</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>41</volume><issue>10</issue><spage>2950</spage><epage>2952</epage><pages>2950-2952</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In order to study the magnetic behaviors of pinned layers under different conditions, we applied compressive mechanical stress to a device and measured the transfer curve changes using a high-field (10 kOe) quasi-static tester. This permitted us to determine the behaviors of the pinned layers and the free layer. The results of the transfer curve measurements led to a classification of these curves. The governing conditions for each category were also determined. A normal transfer curve occurs when "E/sub j/&gt;E/sub u//spl Gt/E/sub k/(AP1) and E/sub k/(AP2)," where: AP1 is the pinned layer adjacent to the antiferromagnetic (AFM) layer; AP2 is the pinned layer adjacent to the spacer; E/sub u/ is the coupling energy constant between the antiferromagnetic layer and the AP1; E/sub j/ is the anti-parallel coupling energy constant between AP1 and AP2 through the Ru; and E/sub k/(AP1) and E/sub k/(AP2) are the induced uniaxial anisotropic energy constants in AP1 and AP2 due to magnetostriction resulting from stress applied giant magnetoresistive (GMR) sensor.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2005.855323</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2005-10, Vol.41 (10), p.2950-2952
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2005_855323
source IEEE Electronic Library (IEL)
subjects Anisotropic energy
Anisotropic magnetoresistance
antiferromagnet
Antiferromagnetic materials
Behavior
Couplings
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Giant magnetoresistance
giant magnetoresistive (GMR)
high-field transfer curve
Magnetic anisotropy
Magnetic devices
Magnetism
Magnetostriction
Magnetostrictive devices
Materials science
Other topics in materials science
Perpendicular magnetic anisotropy
Physics
pinned layers
quasi-static tester
Stress
title The behavior of pinned layers using a high-field transfer curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20behavior%20of%20pinned%20layers%20using%20a%20high-field%20transfer%20curve&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Sangmun%20Oh&rft.date=2005-10-01&rft.volume=41&rft.issue=10&rft.spage=2950&rft.epage=2952&rft.pages=2950-2952&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2005.855323&rft_dat=%3Cproquest_RIE%3E2351319071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867460007&rft_id=info:pmid/&rft_ieee_id=1519170&rfr_iscdi=true