Fuzzy Logic Active Yaw Control of a Low-Power Wind Generator

Active yaw control systems are important for improving the efficiency of the wind generator by keeping a proper orientation of the turbine upon changing wind conditions. Moreover, they can be used for protecting the generator in the case of excessive wind speeds. However, the complex and nonlinear r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2021-11, Vol.19 (11), p.1941-1948
Hauptverfasser: Haro, Alfredo, Young, Hector, Pavez, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active yaw control systems are important for improving the efficiency of the wind generator by keeping a proper orientation of the turbine upon changing wind conditions. Moreover, they can be used for protecting the generator in the case of excessive wind speeds. However, the complex and nonlinear relationship between mechanical variables and the electrical power makes the controller design difficult using conventional techniques such as proportional-integral (PI) or proportional-integral-derivative (PID) controllers. In this paper we present the development of a fuzzy logic yaw control system for low-power wind generators, requiring only intuitive knowledge of the physical system and a set of logic rules established from the operator's experience. A 20 kW wind generator model including a permanent-magnet synchronous generator (PMSG) is implemented in order to assess the performance of the proposed yaw system in terms of the generated power. The parameters of the generator are selected according a commercial Ginlong GL-PMG-20K PMSG. Simulation results obtained in the MATLAB/Simulink environment considering different wind conditions show the effectiveness of the proposed method.
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2021.9475848