Drone use to combat COVID-19: Adaptive tuning proposal of the control system under variable load

The spread of COVID-19 is rapidly increasing, and the fight against it is a priority globally. Multirotor drones can be utilized in fighting the pandemic by disinfecting the environment using sanitizers, thus, reducing the risk of contamination. Propellers are used to control the flight behavior of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2021-06, Vol.19 (6), p.901-908
Hauptverfasser: Canal, Ivan, Reimbold, Manuel, Campos, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spread of COVID-19 is rapidly increasing, and the fight against it is a priority globally. Multirotor drones can be utilized in fighting the pandemic by disinfecting the environment using sanitizers, thus, reducing the risk of contamination. Propellers are used to control the flight behavior of multirotor drones, but it is challenging to control propellers under conditions subjected to variable loads, such as the spraying of sanitizers. In this study, a prototype quadrotor was developed to collect flight data under loading conditions. We used white-box mathematical models of the quadrotor, considering the physical quantities and black-box mathematical models, to identify practical data models. The proportional-integral-derivative control system was applied, in addition to particularizing the system tuning using the ZieglerNichols (ZN) theory applied to the quadrotor. The results of the ZN theory applied to the quadrotor with and without load and those applied to the quadrotor with variable load were validated. It was found that the performance improved by up to 75%. The developed quadrotor with improved tuning sanitizing drone controllers can be used in the fight against COVID-19, achieving ease of implementation and low cost.
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2021.9451234