AI techniques applied to diagnosis of vibrations failures in wind turbines
Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and dia...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2020-08, Vol.18 (8), p.1478-1486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 8 |
container_start_page | 1478 |
container_title | Revista IEEE América Latina |
container_volume | 18 |
creator | Vives, Javier Quiles, Eduardo Garcia, Emilio |
description | Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine |
doi_str_mv | 10.1109/TLA.2020.9111685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2020_9111685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9111685</ieee_id><sourcerecordid>2412252611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWKt3wUvA89ZMNonJsRQflYKXeg7JbqIpNbsmu4r_3pRW8TIzMN88-BC6BDIDIOpmvZrPKKFkpgBASH6EJsCZrIhS9PhffYrOct4QUksh6wl6mi_x4Jq3GD5Gl7Hp-21wLR463AbzGrscMu48_gw2mSF0MWNvwnZMhQ0Rf4VY2DHZEF0-RyfebLO7OOQperm_Wy8eq9Xzw3IxX1UNVTBUygpPueVSEklcTSxrqWC3IB33RNnGg2EMSqgNUAKC2VY0puHSWMp9zesput7v7VO3e3rQm25MsZzUlAGlnAqAQpE91aQu5-S87lN4N-lbA9E7Y7oY0ztj-mCsjFztR4Jz7g__7f4AUcxmVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412252611</pqid></control><display><type>article</type><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><source>IEEE Electronic Library (IEL)</source><creator>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</creator><creatorcontrib>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</creatorcontrib><description>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9111685</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; condition monitoring ; Deep learning ; Degeneration ; Diagnostic systems ; Failure ; fault detection ; Fault diagnosis ; Irrigation ; Machine learning ; Monitoring ; Silicon compounds ; Support vector machines ; Wind turbines</subject><ispartof>Revista IEEE América Latina, 2020-08, Vol.18 (8), p.1478-1486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</citedby><orcidid>0000-0003-0578-4716 ; 0000-0002-2162-0167 ; 0000-0002-5122-8959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9111685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9111685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vives, Javier</creatorcontrib><creatorcontrib>Quiles, Eduardo</creatorcontrib><creatorcontrib>Garcia, Emilio</creatorcontrib><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</description><subject>Algorithms</subject><subject>condition monitoring</subject><subject>Deep learning</subject><subject>Degeneration</subject><subject>Diagnostic systems</subject><subject>Failure</subject><subject>fault detection</subject><subject>Fault diagnosis</subject><subject>Irrigation</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Silicon compounds</subject><subject>Support vector machines</subject><subject>Wind turbines</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEQgIMoWKt3wUvA89ZMNonJsRQflYKXeg7JbqIpNbsmu4r_3pRW8TIzMN88-BC6BDIDIOpmvZrPKKFkpgBASH6EJsCZrIhS9PhffYrOct4QUksh6wl6mi_x4Jq3GD5Gl7Hp-21wLR463AbzGrscMu48_gw2mSF0MWNvwnZMhQ0Rf4VY2DHZEF0-RyfebLO7OOQperm_Wy8eq9Xzw3IxX1UNVTBUygpPueVSEklcTSxrqWC3IB33RNnGg2EMSqgNUAKC2VY0puHSWMp9zesput7v7VO3e3rQm25MsZzUlAGlnAqAQpE91aQu5-S87lN4N-lbA9E7Y7oY0ztj-mCsjFztR4Jz7g__7f4AUcxmVg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vives, Javier</creator><creator>Quiles, Eduardo</creator><creator>Garcia, Emilio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0578-4716</orcidid><orcidid>https://orcid.org/0000-0002-2162-0167</orcidid><orcidid>https://orcid.org/0000-0002-5122-8959</orcidid></search><sort><creationdate>20200801</creationdate><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><author>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>condition monitoring</topic><topic>Deep learning</topic><topic>Degeneration</topic><topic>Diagnostic systems</topic><topic>Failure</topic><topic>fault detection</topic><topic>Fault diagnosis</topic><topic>Irrigation</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Silicon compounds</topic><topic>Support vector machines</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Vives, Javier</creatorcontrib><creatorcontrib>Quiles, Eduardo</creatorcontrib><creatorcontrib>Garcia, Emilio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vives, Javier</au><au>Quiles, Eduardo</au><au>Garcia, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI techniques applied to diagnosis of vibrations failures in wind turbines</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>18</volume><issue>8</issue><spage>1478</spage><epage>1486</epage><pages>1478-1486</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9111685</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0578-4716</orcidid><orcidid>https://orcid.org/0000-0002-2162-0167</orcidid><orcidid>https://orcid.org/0000-0002-5122-8959</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2020-08, Vol.18 (8), p.1478-1486 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TLA_2020_9111685 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms condition monitoring Deep learning Degeneration Diagnostic systems Failure fault detection Fault diagnosis Irrigation Machine learning Monitoring Silicon compounds Support vector machines Wind turbines |
title | AI techniques applied to diagnosis of vibrations failures in wind turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20techniques%20applied%20to%20diagnosis%20of%20vibrations%20failures%20in%20wind%20turbines&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Vives,%20Javier&rft.date=2020-08-01&rft.volume=18&rft.issue=8&rft.spage=1478&rft.epage=1486&rft.pages=1478-1486&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9111685&rft_dat=%3Cproquest_RIE%3E2412252611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412252611&rft_id=info:pmid/&rft_ieee_id=9111685&rfr_iscdi=true |