AI techniques applied to diagnosis of vibrations failures in wind turbines

Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2020-08, Vol.18 (8), p.1478-1486
Hauptverfasser: Vives, Javier, Quiles, Eduardo, Garcia, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1486
container_issue 8
container_start_page 1478
container_title Revista IEEE América Latina
container_volume 18
creator Vives, Javier
Quiles, Eduardo
Garcia, Emilio
description Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine
doi_str_mv 10.1109/TLA.2020.9111685
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2020_9111685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9111685</ieee_id><sourcerecordid>2412252611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWKt3wUvA89ZMNonJsRQflYKXeg7JbqIpNbsmu4r_3pRW8TIzMN88-BC6BDIDIOpmvZrPKKFkpgBASH6EJsCZrIhS9PhffYrOct4QUksh6wl6mi_x4Jq3GD5Gl7Hp-21wLR463AbzGrscMu48_gw2mSF0MWNvwnZMhQ0Rf4VY2DHZEF0-RyfebLO7OOQperm_Wy8eq9Xzw3IxX1UNVTBUygpPueVSEklcTSxrqWC3IB33RNnGg2EMSqgNUAKC2VY0puHSWMp9zesput7v7VO3e3rQm25MsZzUlAGlnAqAQpE91aQu5-S87lN4N-lbA9E7Y7oY0ztj-mCsjFztR4Jz7g__7f4AUcxmVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412252611</pqid></control><display><type>article</type><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><source>IEEE Electronic Library (IEL)</source><creator>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</creator><creatorcontrib>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</creatorcontrib><description>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9111685</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; condition monitoring ; Deep learning ; Degeneration ; Diagnostic systems ; Failure ; fault detection ; Fault diagnosis ; Irrigation ; Machine learning ; Monitoring ; Silicon compounds ; Support vector machines ; Wind turbines</subject><ispartof>Revista IEEE América Latina, 2020-08, Vol.18 (8), p.1478-1486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</citedby><orcidid>0000-0003-0578-4716 ; 0000-0002-2162-0167 ; 0000-0002-5122-8959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9111685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9111685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vives, Javier</creatorcontrib><creatorcontrib>Quiles, Eduardo</creatorcontrib><creatorcontrib>Garcia, Emilio</creatorcontrib><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</description><subject>Algorithms</subject><subject>condition monitoring</subject><subject>Deep learning</subject><subject>Degeneration</subject><subject>Diagnostic systems</subject><subject>Failure</subject><subject>fault detection</subject><subject>Fault diagnosis</subject><subject>Irrigation</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Silicon compounds</subject><subject>Support vector machines</subject><subject>Wind turbines</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEQgIMoWKt3wUvA89ZMNonJsRQflYKXeg7JbqIpNbsmu4r_3pRW8TIzMN88-BC6BDIDIOpmvZrPKKFkpgBASH6EJsCZrIhS9PhffYrOct4QUksh6wl6mi_x4Jq3GD5Gl7Hp-21wLR463AbzGrscMu48_gw2mSF0MWNvwnZMhQ0Rf4VY2DHZEF0-RyfebLO7OOQperm_Wy8eq9Xzw3IxX1UNVTBUygpPueVSEklcTSxrqWC3IB33RNnGg2EMSqgNUAKC2VY0puHSWMp9zesput7v7VO3e3rQm25MsZzUlAGlnAqAQpE91aQu5-S87lN4N-lbA9E7Y7oY0ztj-mCsjFztR4Jz7g__7f4AUcxmVg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vives, Javier</creator><creator>Quiles, Eduardo</creator><creator>Garcia, Emilio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0578-4716</orcidid><orcidid>https://orcid.org/0000-0002-2162-0167</orcidid><orcidid>https://orcid.org/0000-0002-5122-8959</orcidid></search><sort><creationdate>20200801</creationdate><title>AI techniques applied to diagnosis of vibrations failures in wind turbines</title><author>Vives, Javier ; Quiles, Eduardo ; Garcia, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9b6f25b588080e30b4d264718e5f09bcf1a4411a43a120164bd6cac58ab25f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>condition monitoring</topic><topic>Deep learning</topic><topic>Degeneration</topic><topic>Diagnostic systems</topic><topic>Failure</topic><topic>fault detection</topic><topic>Fault diagnosis</topic><topic>Irrigation</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Silicon compounds</topic><topic>Support vector machines</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Vives, Javier</creatorcontrib><creatorcontrib>Quiles, Eduardo</creatorcontrib><creatorcontrib>Garcia, Emilio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vives, Javier</au><au>Quiles, Eduardo</au><au>Garcia, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI techniques applied to diagnosis of vibrations failures in wind turbines</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>18</volume><issue>8</issue><spage>1478</spage><epage>1486</epage><pages>1478-1486</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9111685</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0578-4716</orcidid><orcidid>https://orcid.org/0000-0002-2162-0167</orcidid><orcidid>https://orcid.org/0000-0002-5122-8959</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2020-08, Vol.18 (8), p.1478-1486
issn 1548-0992
1548-0992
language eng
recordid cdi_crossref_primary_10_1109_TLA_2020_9111685
source IEEE Electronic Library (IEL)
subjects Algorithms
condition monitoring
Deep learning
Degeneration
Diagnostic systems
Failure
fault detection
Fault diagnosis
Irrigation
Machine learning
Monitoring
Silicon compounds
Support vector machines
Wind turbines
title AI techniques applied to diagnosis of vibrations failures in wind turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20techniques%20applied%20to%20diagnosis%20of%20vibrations%20failures%20in%20wind%20turbines&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Vives,%20Javier&rft.date=2020-08-01&rft.volume=18&rft.issue=8&rft.spage=1478&rft.epage=1486&rft.pages=1478-1486&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9111685&rft_dat=%3Cproquest_RIE%3E2412252611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412252611&rft_id=info:pmid/&rft_ieee_id=9111685&rfr_iscdi=true