AI techniques applied to diagnosis of vibrations failures in wind turbines
Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and dia...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2020-08, Vol.18 (8), p.1478-1486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine |
---|---|
ISSN: | 1548-0992 1548-0992 |
DOI: | 10.1109/TLA.2020.9111685 |