AI techniques applied to diagnosis of vibrations failures in wind turbines

Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2020-08, Vol.18 (8), p.1478-1486
Hauptverfasser: Vives, Javier, Quiles, Eduardo, Garcia, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supervision and fault diagnosis in wind turbines using automatic learning techniques allow early detection of the degeneration of the components, as well as the detection and diagnosis of sudden failures. This contribution evaluates different machine learning methodologies to predict, detect and diagnose electrical and mechanical failures of wind turbines. An integrated monitoring and diagnostic system is proposed using automatic learning algorithms adapted to the different components and faults of the wind turbine
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2020.9111685