Bayesian Networks applied to Failure Diagnosis in Power Transformer

This work describes the structure, learning and application of Bayesian Network to diagnosis of faults in power transformer through the dissolved gases analysis (DGA) in oil. The Bayesian Network uses the concentration ratios of gases methane/hydrogen (CH 4 /H 2 ), ethane/methane (C 2 H 6 /CH 4 ), e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2013-06, Vol.11 (4), p.1075-1082
Hauptverfasser: Quispe Carita, Angel Javier, Cambraia Leite, L., Pires Medeiros, Aarao Pedro, Barros, R., Sauer, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work describes the structure, learning and application of Bayesian Network to diagnosis of faults in power transformer through the dissolved gases analysis (DGA) in oil. The Bayesian Network uses the concentration ratios of gases methane/hydrogen (CH 4 /H 2 ), ethane/methane (C 2 H 6 /CH 4 ), ethylene/ethane (C 2 H 4 /C 2 H 6 ) and acetylene/ethylene (C 2 H 2 /C 2 H 4 ), as elements that activate the network diagnosis: normal deterioration, electrical failure and thermal failure. The learning was performed from historical database, and the Bayesian Network presented a high degree of reliability and consistency. The simulations suggest good results when compared to some existing in the literature.
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2013.6601752