A Novel Key Point Based MLCS Algorithm for Big Sequences Mining
Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2025-01, Vol.37 (1), p.15-28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 37 |
creator | Li, Yanni Liu, Bing Duan, Tihua Wang, Zhi Li, Hui Cui, Jiangtao |
description | Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length \geqslant ⩾ 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely DAG_{KP} DAGKP (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness. |
doi_str_mv | 10.1109/TKDE.2024.3485234 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3485234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731910</ieee_id><sourcerecordid>10_1109_TKDE_2024_3485234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</originalsourceid><addsrcrecordid>eNpN0MtOwzAQBVALgUQpfAASC_9Awji2E3uF0lAeagpILesoj3EwShOIA1L_nkTtgtXM4t67OIRcM_AZA327Xd0v_QAC4XOhZMDFCZkxKZUXMM1Oxx8E8wQX0Tm5cO4TAFSk2IzcxfSl-8WGrnBP3zrbDnSRO6zoOk02NG7qrrfDx46arqcLW9MNfv9gW6Kja9vatr4kZyZvHF4d75y8Pyy3yZOXvj4-J3HqlUyoweNCY6gkB5RhIQ3XWFQIZVhWUpuwDMHwoGJCSFWBxihHXshIa1WJMQxG8jlhh92y75zr0WRfvd3l_T5jkE0C2SSQTQLZUWDs3Bw6FhH_5SM-mgD_A5d2VaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</creator><creatorcontrib>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</creatorcontrib><description><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3485234</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[Approximation algorithms ; DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints) ; Data mining ; Directed acyclic graph ; Explosions ; Face recognition ; Finite element analysis ; Heuristic algorithms ; KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS ) ; MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence) ; MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph) ; non-critical points ; NP-hard problem ; Parallel algorithms ; Problem-solving]]></subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.15-28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</cites><orcidid>0000-0002-4096-6980 ; 0000-0003-2382-6289 ; 0000-0001-5569-0780 ; 0000-0002-0304-5664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yanni</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Duan, Tihua</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cui, Jiangtao</creatorcontrib><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></description><subject>Approximation algorithms</subject><subject><![CDATA[DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints)]]></subject><subject>Data mining</subject><subject>Directed acyclic graph</subject><subject>Explosions</subject><subject>Face recognition</subject><subject>Finite element analysis</subject><subject>Heuristic algorithms</subject><subject>KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS )</subject><subject>MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence)</subject><subject>MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph)</subject><subject>non-critical points</subject><subject>NP-hard problem</subject><subject>Parallel algorithms</subject><subject>Problem-solving</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQBVALgUQpfAASC_9Awji2E3uF0lAeagpILesoj3EwShOIA1L_nkTtgtXM4t67OIRcM_AZA327Xd0v_QAC4XOhZMDFCZkxKZUXMM1Oxx8E8wQX0Tm5cO4TAFSk2IzcxfSl-8WGrnBP3zrbDnSRO6zoOk02NG7qrrfDx46arqcLW9MNfv9gW6Kja9vatr4kZyZvHF4d75y8Pyy3yZOXvj4-J3HqlUyoweNCY6gkB5RhIQ3XWFQIZVhWUpuwDMHwoGJCSFWBxihHXshIa1WJMQxG8jlhh92y75zr0WRfvd3l_T5jkE0C2SSQTQLZUWDs3Bw6FhH_5SM-mgD_A5d2VaQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Li, Yanni</creator><creator>Liu, Bing</creator><creator>Duan, Tihua</creator><creator>Wang, Zhi</creator><creator>Li, Hui</creator><creator>Cui, Jiangtao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4096-6980</orcidid><orcidid>https://orcid.org/0000-0003-2382-6289</orcidid><orcidid>https://orcid.org/0000-0001-5569-0780</orcidid><orcidid>https://orcid.org/0000-0002-0304-5664</orcidid></search><sort><creationdate>202501</creationdate><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><author>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation algorithms</topic><topic><![CDATA[DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints)]]></topic><topic>Data mining</topic><topic>Directed acyclic graph</topic><topic>Explosions</topic><topic>Face recognition</topic><topic>Finite element analysis</topic><topic>Heuristic algorithms</topic><topic>KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS )</topic><topic>MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence)</topic><topic>MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph)</topic><topic>non-critical points</topic><topic>NP-hard problem</topic><topic>Parallel algorithms</topic><topic>Problem-solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanni</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Duan, Tihua</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cui, Jiangtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yanni</au><au>Liu, Bing</au><au>Duan, Tihua</au><au>Wang, Zhi</au><au>Li, Hui</au><au>Cui, Jiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-01</date><risdate>2025</risdate><volume>37</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3485234</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4096-6980</orcidid><orcidid>https://orcid.org/0000-0003-2382-6289</orcidid><orcidid>https://orcid.org/0000-0001-5569-0780</orcidid><orcidid>https://orcid.org/0000-0002-0304-5664</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.15-28 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2024_3485234 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Approximation algorithms DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints) Data mining Directed acyclic graph Explosions Face recognition Finite element analysis Heuristic algorithms KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS ) MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence) MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph) non-critical points NP-hard problem Parallel algorithms Problem-solving |
title | A Novel Key Point Based MLCS Algorithm for Big Sequences Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Key%20Point%20Based%20MLCS%20Algorithm%20for%20Big%20Sequences%20Mining&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Yanni&rft.date=2025-01&rft.volume=37&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3485234&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3485234%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10731910&rfr_iscdi=true |