A Novel Key Point Based MLCS Algorithm for Big Sequences Mining

Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2025-01, Vol.37 (1), p.15-28
Hauptverfasser: Li, Yanni, Liu, Bing, Duan, Tihua, Wang, Zhi, Li, Hui, Cui, Jiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 15
container_title IEEE transactions on knowledge and data engineering
container_volume 37
creator Li, Yanni
Liu, Bing
Duan, Tihua
Wang, Zhi
Li, Hui
Cui, Jiangtao
description Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length \geqslant ⩾ 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely DAG_{KP} DAGKP (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.
doi_str_mv 10.1109/TKDE.2024.3485234
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3485234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731910</ieee_id><sourcerecordid>10_1109_TKDE_2024_3485234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</originalsourceid><addsrcrecordid>eNpN0MtOwzAQBVALgUQpfAASC_9Awji2E3uF0lAeagpILesoj3EwShOIA1L_nkTtgtXM4t67OIRcM_AZA327Xd0v_QAC4XOhZMDFCZkxKZUXMM1Oxx8E8wQX0Tm5cO4TAFSk2IzcxfSl-8WGrnBP3zrbDnSRO6zoOk02NG7qrrfDx46arqcLW9MNfv9gW6Kja9vatr4kZyZvHF4d75y8Pyy3yZOXvj4-J3HqlUyoweNCY6gkB5RhIQ3XWFQIZVhWUpuwDMHwoGJCSFWBxihHXshIa1WJMQxG8jlhh92y75zr0WRfvd3l_T5jkE0C2SSQTQLZUWDs3Bw6FhH_5SM-mgD_A5d2VaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</creator><creatorcontrib>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</creatorcontrib><description><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3485234</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[Approximation algorithms ; DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints) ; Data mining ; Directed acyclic graph ; Explosions ; Face recognition ; Finite element analysis ; Heuristic algorithms ; KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS ) ; MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence) ; MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph) ; non-critical points ; NP-hard problem ; Parallel algorithms ; Problem-solving]]></subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.15-28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</cites><orcidid>0000-0002-4096-6980 ; 0000-0003-2382-6289 ; 0000-0001-5569-0780 ; 0000-0002-0304-5664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yanni</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Duan, Tihua</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cui, Jiangtao</creatorcontrib><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></description><subject>Approximation algorithms</subject><subject><![CDATA[DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints)]]></subject><subject>Data mining</subject><subject>Directed acyclic graph</subject><subject>Explosions</subject><subject>Face recognition</subject><subject>Finite element analysis</subject><subject>Heuristic algorithms</subject><subject>KP-MLCS (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K ey &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;p oint based &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;MLCS )</subject><subject>MLCS (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;M ultiple &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ongest &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;c ommon &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;s ubsequence)</subject><subject>MLCS-DAG (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;D irected &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;a cyclic &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;g raph)</subject><subject>non-critical points</subject><subject>NP-hard problem</subject><subject>Parallel algorithms</subject><subject>Problem-solving</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQBVALgUQpfAASC_9Awji2E3uF0lAeagpILesoj3EwShOIA1L_nkTtgtXM4t67OIRcM_AZA327Xd0v_QAC4XOhZMDFCZkxKZUXMM1Oxx8E8wQX0Tm5cO4TAFSk2IzcxfSl-8WGrnBP3zrbDnSRO6zoOk02NG7qrrfDx46arqcLW9MNfv9gW6Kja9vatr4kZyZvHF4d75y8Pyy3yZOXvj4-J3HqlUyoweNCY6gkB5RhIQ3XWFQIZVhWUpuwDMHwoGJCSFWBxihHXshIa1WJMQxG8jlhh92y75zr0WRfvd3l_T5jkE0C2SSQTQLZUWDs3Bw6FhH_5SM-mgD_A5d2VaQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Li, Yanni</creator><creator>Liu, Bing</creator><creator>Duan, Tihua</creator><creator>Wang, Zhi</creator><creator>Li, Hui</creator><creator>Cui, Jiangtao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4096-6980</orcidid><orcidid>https://orcid.org/0000-0003-2382-6289</orcidid><orcidid>https://orcid.org/0000-0001-5569-0780</orcidid><orcidid>https://orcid.org/0000-0002-0304-5664</orcidid></search><sort><creationdate>202501</creationdate><title>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</title><author>Li, Yanni ; Liu, Bing ; Duan, Tihua ; Wang, Zhi ; Li, Hui ; Cui, Jiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-349e68530e56b5f39ebde0c6cd59f6c60f32d14458d09e7ae3b57998d45f30f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation algorithms</topic><topic><![CDATA[DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints)]]></topic><topic>Data mining</topic><topic>Directed acyclic graph</topic><topic>Explosions</topic><topic>Face recognition</topic><topic>Finite element analysis</topic><topic>Heuristic algorithms</topic><topic>KP-MLCS (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K ey &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;p oint based &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;MLCS )</topic><topic>MLCS (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;M ultiple &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ongest &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;c ommon &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;s ubsequence)</topic><topic>MLCS-DAG (&lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;D irected &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;a cyclic &lt;underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;g raph)</topic><topic>non-critical points</topic><topic>NP-hard problem</topic><topic>Parallel algorithms</topic><topic>Problem-solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanni</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Duan, Tihua</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Cui, Jiangtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yanni</au><au>Liu, Bing</au><au>Duan, Tihua</au><au>Wang, Zhi</au><au>Li, Hui</au><au>Cui, Jiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Key Point Based MLCS Algorithm for Big Sequences Mining</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-01</date><risdate>2025</risdate><volume>37</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length <inline-formula><tex-math notation="LaTeX">\geqslant</tex-math> <mml:math><mml:mi>⩾</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3485234.gif"/> </inline-formula> 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely <inline-formula><tex-math notation="LaTeX">DAG_{KP}</tex-math> <mml:math><mml:mrow><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="li-ieq2-3485234.gif"/> </inline-formula> (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.]]></abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3485234</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4096-6980</orcidid><orcidid>https://orcid.org/0000-0003-2382-6289</orcidid><orcidid>https://orcid.org/0000-0001-5569-0780</orcidid><orcidid>https://orcid.org/0000-0002-0304-5664</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.15-28
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2024_3485234
source IEEE/IET Electronic Library (IEL)
subjects Approximation algorithms
DAG<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{KP}</tex-math> <mml:math> <mml:msub> <mml:mrow/> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>P</mml:mi> </mml:mrow> </mml:msub> </mml:math> <inline-graphic xlink:href="li-ieq3-3485234.gif" xlink:type="simple"/> </inline-formula> </named-content> (a new MLCS-<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">DAG containing only <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oints)
Data mining
Directed acyclic graph
Explosions
Face recognition
Finite element analysis
Heuristic algorithms
KP-MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K ey <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p oint based <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MLCS )
MLCS (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M ultiple <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ongest <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">c ommon <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">s ubsequence)
MLCS-DAG (<underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">D irected <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">a cyclic <underline xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">g raph)
non-critical points
NP-hard problem
Parallel algorithms
Problem-solving
title A Novel Key Point Based MLCS Algorithm for Big Sequences Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Key%20Point%20Based%20MLCS%20Algorithm%20for%20Big%20Sequences%20Mining&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Yanni&rft.date=2025-01&rft.volume=37&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3485234&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2024_3485234%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10731910&rfr_iscdi=true