A Novel Key Point Based MLCS Algorithm for Big Sequences Mining

Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2025-01, Vol.37 (1), p.15-28
Hauptverfasser: Li, Yanni, Liu, Bing, Duan, Tihua, Wang, Zhi, Li, Hui, Cui, Jiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length \geqslant ⩾ 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely DAG_{KP} DAGKP (a new MLCS- DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2024.3485234