Prompt-Learning for Short Text Classification
In the short text, the extremely short length, feature sparsity, and high ambiguity pose huge challenges to classification tasks. Recently, as an effective method for tuning Pre-trained Language Models for specific downstream tasks, prompt-learning has attracted a vast amount of attention and resear...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2024-10, Vol.36 (10), p.5328-5339 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the short text, the extremely short length, feature sparsity, and high ambiguity pose huge challenges to classification tasks. Recently, as an effective method for tuning Pre-trained Language Models for specific downstream tasks, prompt-learning has attracted a vast amount of attention and research. The main intuition behind the prompt-learning is to insert the template into the input and convert the tasks into equivalent cloze-style tasks. However, most prompt-learning methods only consider the class name and monotonous strategy for knowledge incorporating in cloze-style prediction, which will inevitably incur omissions and bias in short text classification tasks. In this paper, we propose a short text classification method with prompt-learning. Specifically, the top M M concepts related to the entity in the short text are retrieved from the open Knowledge Graph like Probase, these concepts are first selected by the distance with class labels, which takes both the short text itself and the class name into consideration during expanding label word space. Then, we conducted four additional strategies for the integration of the expanded concepts, and the union of these concepts are adopted finally in the verbalizer of prompt-learning. Experimental results show that the obvious improvement is obtained compared with other state-of-the-art methods on five well-known datasets. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2023.3332787 |