Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs

Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-09, Vol.35 (9), p.1-14
Hauptverfasser: Jin, Ming, Zheng, Yu, Li, Yuan-Fang, Chen, Siheng, Yang, Bin, Pan, Shirui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i). Discrete neural architectures : Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii). High complexity : Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii). Reliance on graph priors : Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M ultivariate T ime series with dynamic G raph neural O rdinary D ifferential E quations ( MTGODE ). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2022.3221989