An Efficient Ride-Sharing Framework for Maximizing Shared Route

Ride-sharing (RS) has great values in saving energy and alleviating traffic pressure. Existing studies can be improved for better efficiency. Therefore, we propose a new ride-sharing model, where each driver has a requirement that if the driver shares a ride with a rider, the shared route percentage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2018-02, Vol.30 (2), p.219-233
Hauptverfasser: Ta, Na, Li, Guoliang, Zhao, Tianyu, Feng, Jianhua, Ma, Hanchao, Gong, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ride-sharing (RS) has great values in saving energy and alleviating traffic pressure. Existing studies can be improved for better efficiency. Therefore, we propose a new ride-sharing model, where each driver has a requirement that if the driver shares a ride with a rider, the shared route percentage (i.e., the ratio of the shared route's distance to the driver's total travel distance) exceeds an expectation rate of the driver, e.g., 0.8. We consider two variants of this problem. The first considers multiple drivers and multiple riders and aims to compute driver-rider pairs to maximize the overall shared route percentage (SRP). We model this problem as the maximum weighted bigraph matching problem, where the vertices are drivers and riders, edges are driver-rider pairs, and edge weights are driver-rider's SRP. However, it is rather expensive to compute the SRP values for large numbers of driver-rider pairs on road networks. To address this problem, we propose an efficient method to prune many unnecessary driver-rider pairs and avoid computing the SRP values for every pair. To improve the efficiency, we propose an approximate method with error bound guarantee. The basic idea is that we compute an upper bound and a lower bound for each driver-rider pair in constant time. Then, we estimate an upper bound and a lower bound of the graph matching. Next, we select some driver-rider pairs, compute their real shortest-route distance, and update the lower and upper bounds of the maximum graph matching. We repeat above steps until the ratio of the upper bound to the lower bound is not larger than a given approximate rate. The second considers multiple drivers and a single rider and aims to find the top-k drivers for the rider with the largest SRP. We first prune a large number of drivers that cannot meet the SRP requirements. Then, we propose a best-first algorithm that progressively selects the drivers with high probability to be in the top- k results and prunes the drivers that cannot be in the top- k results. Extensive experiments on real-world datasets demonstrate the superiority of our method.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2017.2760880