Influential Node Tracking on Dynamic Social Network: An Interchange Greedy Approach

As both social network structure and strength of influence between individuals evolve constantly, it requires tracking the influential nodes under a dynamic setting. To address this problem, we explore the Influential Node Tracking (INT) problem as an extension to the traditional Influence Maximizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2017-02, Vol.29 (2), p.359-372
Hauptverfasser: Song, Guojie, Li, Yuanhao, Chen, Xiaodong, He, Xinran, Tang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As both social network structure and strength of influence between individuals evolve constantly, it requires tracking the influential nodes under a dynamic setting. To address this problem, we explore the Influential Node Tracking (INT) problem as an extension to the traditional Influence Maximization problem (IM) under dynamic social networks. While the Influence Maximization problem aims at identifying a set of k nodes to maximize the joint influence under one static network, the INT problem focuses on tracking a set of influential nodes that keeps maximizing the influence as the network evolves. Utilizing the smoothness of the evolution of the network structure, we propose an efficient algorithm, Upper Bound Interchange Greedy (UBI) and a variant, UBI+. Instead of constructing the seed set from the ground, we start from the influential seed set we found previously and implement node replacement to improve the influence coverage. Furthermore, by using a fast update method by calculating the marginal gain of nodes, our algorithm can scale to dynamic social networks with millions of nodes. Empirical experiments on three real large-scale dynamic social networks show that our UBI and its variants, UBI+ achieves better performance in terms of both influence coverage and running time.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2016.2620141