Query expansion by mining user logs

Queries to search engines on the Web are usually short. They do not provide sufficient information for an effective selection of relevant documents. Previous research has proposed the utilization of query expansion to deal with this problem. However, expansion terms are usually determined on term co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2003-07, Vol.15 (4), p.829-839
Hauptverfasser: Cui, Hang, Wen, Ji-Rong, Nie, Jian-Yun, Ma, Wei-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Queries to search engines on the Web are usually short. They do not provide sufficient information for an effective selection of relevant documents. Previous research has proposed the utilization of query expansion to deal with this problem. However, expansion terms are usually determined on term co-occurrences within documents. In this study, we propose a new method for query expansion based on user interactions recorded in user logs. The central idea is to extract correlations between query terms and document terms by analyzing user logs. These correlations are then used to select high-quality expansion terms for new queries. Compared to previous query expansion methods, ours takes advantage of the user judgments implied in user logs. The experimental results show that the log-based query expansion method can produce much better results than both the classical search method and the other query expansion methods.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2003.1209002