Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems

The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2024, p.1-10
Hauptverfasser: Bo, Peng, Tu, Wanqing, Tu, Xingbin, Qu, Fengzhong, Wang, Fei-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on intelligent vehicles
container_volume
creator Bo, Peng
Tu, Wanqing
Tu, Xingbin
Qu, Fengzhong
Wang, Fei-Yue
description The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.
doi_str_mv 10.1109/TIV.2023.3348996
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2023_3348996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379519</ieee_id><sourcerecordid>10_1109_TIV_2023_3348996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-9f449a0601826bdc0a73bd973971b541574e99ee58b33ec8558d20c8cce605733</originalsourceid><addsrcrecordid>eNpN0MFPwjAUBvDGaCJB7h489B8Yvrbr1npbhuISjESQo0vXveFMYaSFg_-9QzDx9L3D973Dj5BbBmPGQN8vi9WYAxdjIWKldXJBBlykOlIa4su_W0l1TUYhfAEASxRXoAfkY3Iwjr4Vi8i0NdZ0brxxDh0ttnt0rl3j1iJdHHxj-mw6T4sue1ktwgPNaN5FEwztekuz3c53xn7-NkRO576rHG7CDblqjAs4OueQvD89LvPnaPY6LfJsFlkm-D7STRxrAwkwxZOqtmBSUdU6FTpllYyZTGPUGlGqSgi0SkpVc7DKWkxApkIMCZz-Wt-F4LEpd77dGP9dMiiPRGVPVB6JyjNRP7k7TVpE_FfvrSTT4gdoRGAz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</creator><creatorcontrib>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</creatorcontrib><description>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3348996</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Dual reconfigurable intelligence surface (RIS) ; Electromagnetics ; internet of autonomous marine vehicles systems (IoAMVSs) ; Marine vehicles ; parallel intelligence ; Real-time systems ; Relays ; Sea surface ; Task analysis</subject><ispartof>IEEE transactions on intelligent vehicles, 2024, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bo, Peng</creatorcontrib><creatorcontrib>Tu, Wanqing</creatorcontrib><creatorcontrib>Tu, Xingbin</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</description><subject>Acoustics</subject><subject>Dual reconfigurable intelligence surface (RIS)</subject><subject>Electromagnetics</subject><subject>internet of autonomous marine vehicles systems (IoAMVSs)</subject><subject>Marine vehicles</subject><subject>parallel intelligence</subject><subject>Real-time systems</subject><subject>Relays</subject><subject>Sea surface</subject><subject>Task analysis</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MFPwjAUBvDGaCJB7h489B8Yvrbr1npbhuISjESQo0vXveFMYaSFg_-9QzDx9L3D973Dj5BbBmPGQN8vi9WYAxdjIWKldXJBBlykOlIa4su_W0l1TUYhfAEASxRXoAfkY3Iwjr4Vi8i0NdZ0brxxDh0ttnt0rl3j1iJdHHxj-mw6T4sue1ktwgPNaN5FEwztekuz3c53xn7-NkRO576rHG7CDblqjAs4OueQvD89LvPnaPY6LfJsFlkm-D7STRxrAwkwxZOqtmBSUdU6FTpllYyZTGPUGlGqSgi0SkpVc7DKWkxApkIMCZz-Wt-F4LEpd77dGP9dMiiPRGVPVB6JyjNRP7k7TVpE_FfvrSTT4gdoRGAz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bo, Peng</creator><creator>Tu, Wanqing</creator><creator>Tu, Xingbin</creator><creator>Qu, Fengzhong</creator><creator>Wang, Fei-Yue</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><author>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-9f449a0601826bdc0a73bd973971b541574e99ee58b33ec8558d20c8cce605733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Dual reconfigurable intelligence surface (RIS)</topic><topic>Electromagnetics</topic><topic>internet of autonomous marine vehicles systems (IoAMVSs)</topic><topic>Marine vehicles</topic><topic>parallel intelligence</topic><topic>Real-time systems</topic><topic>Relays</topic><topic>Sea surface</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Peng</creatorcontrib><creatorcontrib>Tu, Wanqing</creatorcontrib><creatorcontrib>Tu, Xingbin</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bo, Peng</au><au>Tu, Wanqing</au><au>Tu, Xingbin</au><au>Qu, Fengzhong</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</abstract><pub>IEEE</pub><doi>10.1109/TIV.2023.3348996</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2024, p.1-10
issn 2379-8858
2379-8904
language eng
recordid cdi_crossref_primary_10_1109_TIV_2023_3348996
source IEEE Electronic Library (IEL)
subjects Acoustics
Dual reconfigurable intelligence surface (RIS)
Electromagnetics
internet of autonomous marine vehicles systems (IoAMVSs)
Marine vehicles
parallel intelligence
Real-time systems
Relays
Sea surface
Task analysis
title Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20RIS-aided%20Parallel%20Intelligence%20Surface%20for%20IoAMVSs:%20A%20Co-Design%20Approach%20for%203C%20Problems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Bo,%20Peng&rft.date=2024&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3348996&rft_dat=%3Ccrossref_RIE%3E10_1109_TIV_2023_3348996%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10379519&rfr_iscdi=true