Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems
The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it dif...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2024, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | |
creator | Bo, Peng Tu, Wanqing Tu, Xingbin Qu, Fengzhong Wang, Fei-Yue |
description | The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems. |
doi_str_mv | 10.1109/TIV.2023.3348996 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2023_3348996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379519</ieee_id><sourcerecordid>10_1109_TIV_2023_3348996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-9f449a0601826bdc0a73bd973971b541574e99ee58b33ec8558d20c8cce605733</originalsourceid><addsrcrecordid>eNpN0MFPwjAUBvDGaCJB7h489B8Yvrbr1npbhuISjESQo0vXveFMYaSFg_-9QzDx9L3D973Dj5BbBmPGQN8vi9WYAxdjIWKldXJBBlykOlIa4su_W0l1TUYhfAEASxRXoAfkY3Iwjr4Vi8i0NdZ0brxxDh0ttnt0rl3j1iJdHHxj-mw6T4sue1ktwgPNaN5FEwztekuz3c53xn7-NkRO576rHG7CDblqjAs4OueQvD89LvPnaPY6LfJsFlkm-D7STRxrAwkwxZOqtmBSUdU6FTpllYyZTGPUGlGqSgi0SkpVc7DKWkxApkIMCZz-Wt-F4LEpd77dGP9dMiiPRGVPVB6JyjNRP7k7TVpE_FfvrSTT4gdoRGAz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</creator><creatorcontrib>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</creatorcontrib><description>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3348996</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Dual reconfigurable intelligence surface (RIS) ; Electromagnetics ; internet of autonomous marine vehicles systems (IoAMVSs) ; Marine vehicles ; parallel intelligence ; Real-time systems ; Relays ; Sea surface ; Task analysis</subject><ispartof>IEEE transactions on intelligent vehicles, 2024, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bo, Peng</creatorcontrib><creatorcontrib>Tu, Wanqing</creatorcontrib><creatorcontrib>Tu, Xingbin</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</description><subject>Acoustics</subject><subject>Dual reconfigurable intelligence surface (RIS)</subject><subject>Electromagnetics</subject><subject>internet of autonomous marine vehicles systems (IoAMVSs)</subject><subject>Marine vehicles</subject><subject>parallel intelligence</subject><subject>Real-time systems</subject><subject>Relays</subject><subject>Sea surface</subject><subject>Task analysis</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MFPwjAUBvDGaCJB7h489B8Yvrbr1npbhuISjESQo0vXveFMYaSFg_-9QzDx9L3D973Dj5BbBmPGQN8vi9WYAxdjIWKldXJBBlykOlIa4su_W0l1TUYhfAEASxRXoAfkY3Iwjr4Vi8i0NdZ0brxxDh0ttnt0rl3j1iJdHHxj-mw6T4sue1ktwgPNaN5FEwztekuz3c53xn7-NkRO576rHG7CDblqjAs4OueQvD89LvPnaPY6LfJsFlkm-D7STRxrAwkwxZOqtmBSUdU6FTpllYyZTGPUGlGqSgi0SkpVc7DKWkxApkIMCZz-Wt-F4LEpd77dGP9dMiiPRGVPVB6JyjNRP7k7TVpE_FfvrSTT4gdoRGAz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bo, Peng</creator><creator>Tu, Wanqing</creator><creator>Tu, Xingbin</creator><creator>Qu, Fengzhong</creator><creator>Wang, Fei-Yue</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</title><author>Bo, Peng ; Tu, Wanqing ; Tu, Xingbin ; Qu, Fengzhong ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-9f449a0601826bdc0a73bd973971b541574e99ee58b33ec8558d20c8cce605733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Dual reconfigurable intelligence surface (RIS)</topic><topic>Electromagnetics</topic><topic>internet of autonomous marine vehicles systems (IoAMVSs)</topic><topic>Marine vehicles</topic><topic>parallel intelligence</topic><topic>Real-time systems</topic><topic>Relays</topic><topic>Sea surface</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Peng</creatorcontrib><creatorcontrib>Tu, Wanqing</creatorcontrib><creatorcontrib>Tu, Xingbin</creatorcontrib><creatorcontrib>Qu, Fengzhong</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bo, Peng</au><au>Tu, Wanqing</au><au>Tu, Xingbin</au><au>Qu, Fengzhong</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>The internet of autonomous marine vehicle systems (IoAMVSs) requires ultra-reliable communications, ultra-real-time control, and ultra-high precision computation. Classical parallel intelligence theory is a popular method for developing IoAMVSs in the literature. However, this method has made it difficult to achieve the anticipated performance when co-designing communications, control, and computing (3C) in complex oceanic communication environments. This article explores the efficient integration of reconfigurable intelligence surface (RIS) with classical parallel intelligent theory to address these issues effectively. A novel framework is proposed in this article to implement a dual RIS-aided parallel intelligence theory for enabling large-scale cross-media 3C co-design in IoAMVSs. The framework consists of electromagnetic RIS and acoustic RIS, which form the dual RIS-aided parallel intelligence surfaces. Our dual RIS-aided parallel intelligence surfaces have the potential to efficiently achieve highly accurate position, navigation, cooperative control, and data fusion for IoAMVSs. We hope that our framework can promote the development of more efficient, energy-saving, and safer intelligent ocean transportation systems.</abstract><pub>IEEE</pub><doi>10.1109/TIV.2023.3348996</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2024, p.1-10 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIV_2023_3348996 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Dual reconfigurable intelligence surface (RIS) Electromagnetics internet of autonomous marine vehicles systems (IoAMVSs) Marine vehicles parallel intelligence Real-time systems Relays Sea surface Task analysis |
title | Dual RIS-aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20RIS-aided%20Parallel%20Intelligence%20Surface%20for%20IoAMVSs:%20A%20Co-Design%20Approach%20for%203C%20Problems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Bo,%20Peng&rft.date=2024&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3348996&rft_dat=%3Ccrossref_RIE%3E10_1109_TIV_2023_3348996%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10379519&rfr_iscdi=true |