List-decoding of AG codes without genus penalty
In this paper we consider algebraic geometry (AG) codes: a class of codes constructed from algebraic codes (equivalently, using function fields) by Goppa. These codes can be list-decoded using the famous GuruswamiSudan (GS) list-decoder, but the genus g of the used function field gives rise to negat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-12, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider algebraic geometry (AG) codes: a class of codes constructed from algebraic codes (equivalently, using function fields) by Goppa. These codes can be list-decoded using the famous GuruswamiSudan (GS) list-decoder, but the genus g of the used function field gives rise to negative term in the decoding radius, which we call the genus penalty. In this article, we present a GS-like list-decoding algorithm for arbitrary AG codes, which we call the inseparable GS list-decoder . Apart from the multiplicity parameter s and designed list size ℓ, common for the GS list-decoder, we introduce an inseparability exponent e . Choosing this exponent to be positive gives rise to a list-decoder for which the genus penalty is reduced with a factor 1/ p e compared to the usual GS list-decoder. Here p is the characteristic. Our list-decoder can be executed in Õ( s ℓ ω μ ω-1 p e ( n + g )) field operations, where n is the code length and Õ means that logarithmic factors are ignored. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2024.3510874 |