Formally Unimodular Packings for the Gaussian Wiretap Channel

This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-12, Vol.69 (12), p.7755-7776
Hauptverfasser: Bollauf, Maiara F., Lin, Hsuan-Yin, Ytrehus, Oyvind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular and isodual lattices, and the Construction A formally unimodular packings obtained from formally self-dual codes are presented. Recently, lattice coding for the Gaussian wiretap channel has been considered. A measure called the secrecy function was proposed to characterize the eavesdropper's probability of correctly decoding. The aim is to determine the global maximum value of the secrecy function, called (strong) secrecy gain. We further apply lattice-like packings to coset coding for the Gaussian wiretap channel and show that the family of formally unimodular packings shares the same secrecy function behavior as unimodular and isodual lattices. We propose a universal approach to determine the secrecy gain of a Construction A formally unimodular packing obtained from a formally self-dual code. From the weight distribution of a code, we provide a necessary condition for a formally self-dual code such that its Construction A formally unimodular packing is secrecy-optimal. Finally, we demonstrate that formally unimodular packings/lattices can achieve higher secrecy gain than the best-known unimodular lattices.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2023.3322771