Comments on "Generalized Box-Müller Method for Generating q-Gaussian Random Deviates"
The generalized Box-Müller algorithm provides a methodology for generating q-Gaussian random variates, which generalizes the Gaussian (q=1) . The parameter -\infty < {q}\le 3 is related to the shape of the tail decay; {q} < 1 for compact-support including parabola \left ({{q}={\it{ 0}} }\...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-10, Vol.67 (10), p.6785-6789 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generalized Box-Müller algorithm provides a methodology for generating q-Gaussian random variates, which generalizes the Gaussian (q=1) . The parameter -\infty < {q}\le 3 is related to the shape of the tail decay; {q} < 1 for compact-support including parabola \left ({{q}={\it{ 0}} }\right) ; 1 < {q}\le 3 for heavy-tail including Cauchy \left ({{q}=2 }\right) . This addendum clarifies the transformation {q}^{\prime }=\frac {3{q}-1}{{q}+1} within the algorithm is due to a difference in the dimensions d of the generalized logarithm and the generalized distribution. The transformation is clarified by the decomposition of {q}=1+\frac {2\kappa }{1+{d}\kappa } , where the shape parameter -1 < \kappa \le \infty quantifies the magnitude \vphantom {^{R}} of the deformation from exponential. A simpler specification for the generalized Box-Müller algorithm is provided using the shape of the tail decay. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3071489 |