Optimal Anticodes, Diameter Perfect Codes, Chains and Weights
Let {P} be a partial order on [{n}] = \{1,2,\ldots,{n}\} , \mathbb {F}_{q}^{n} be the linear space of {n} -tuples over a finite field \mathbb {F}_{q} and {w} be a weight on \mathbb {F}_{q} . In this paper, we consider metrics on \mathbb {F}_{q}^{n} induced by chain orders {P} over [{...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-07, Vol.67 (7), p.4255-4262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {P} be a partial order on [{n}] = \{1,2,\ldots,{n}\} , \mathbb {F}_{q}^{n} be the linear space of {n} -tuples over a finite field \mathbb {F}_{q} and {w} be a weight on \mathbb {F}_{q} . In this paper, we consider metrics on \mathbb {F}_{q}^{n} induced by chain orders {P} over [{n}] and weights {w} over \mathbb {F}_{q} , and we determine the cardinality of all optimal anticodes and completely classify them. Moreover, we determine all diameter perfect codes for a set of relevant instances on the aforementioned metric spaces. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3052685 |