Optimal Anticodes, Diameter Perfect Codes, Chains and Weights

Let {P} be a partial order on [{n}] = \{1,2,\ldots,{n}\} , \mathbb {F}_{q}^{n} be the linear space of {n} -tuples over a finite field \mathbb {F}_{q} and {w} be a weight on \mathbb {F}_{q} . In this paper, we consider metrics on \mathbb {F}_{q}^{n} induced by chain orders {P} over [{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-07, Vol.67 (7), p.4255-4262
Hauptverfasser: Panek, Luciano, Panek, Nayene Michele Paiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let {P} be a partial order on [{n}] = \{1,2,\ldots,{n}\} , \mathbb {F}_{q}^{n} be the linear space of {n} -tuples over a finite field \mathbb {F}_{q} and {w} be a weight on \mathbb {F}_{q} . In this paper, we consider metrics on \mathbb {F}_{q}^{n} induced by chain orders {P} over [{n}] and weights {w} over \mathbb {F}_{q} , and we determine the cardinality of all optimal anticodes and completely classify them. Moreover, we determine all diameter perfect codes for a set of relevant instances on the aforementioned metric spaces.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3052685