Discrete Sampling: A Graph Theoretic Approach to Orthogonal Interpolation
We study the problem of finding unitary submatrices of the N \times N discrete Fourier transform matrix, in the context of interpolating a discrete bandlimited signal using an orthogonal basis. This problem is related to a diverse set of questions on idempotents on \mathbb {Z}_{N} and tiling \m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-12, Vol.65 (12), p.8119-8130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of finding unitary submatrices of the N \times N discrete Fourier transform matrix, in the context of interpolating a discrete bandlimited signal using an orthogonal basis. This problem is related to a diverse set of questions on idempotents on \mathbb {Z}_{N} and tiling \mathbb {Z}_{N} . In this work, we establish a graph-theoretic approach and connections to the problem of finding maximum cliques. We identify the key properties of these graphs that make the interpolation problem tractable when N is a prime power, and we identify the challenges in generalizing to arbitrary N . Finally, we investigate some connections between graph properties and the spectral-tile direction of the Fuglede conjecture. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2019.2934688 |