Wireless MapReduce Distributed Computing

Motivated by mobile edge computing and wireless data centers, we study a wireless distributed computing framework where the distributed nodes exchange information over a wireless interference network. Our framework follows the structure of MapReduce. This framework consists of Map, Shuffle, and Redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-10, Vol.65 (10), p.6101-6114
Hauptverfasser: Li, Fan, Chen, Jinyuan, Wang, Zhiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by mobile edge computing and wireless data centers, we study a wireless distributed computing framework where the distributed nodes exchange information over a wireless interference network. Our framework follows the structure of MapReduce. This framework consists of Map, Shuffle, and Reduce phases, where Map and Reduce are computation phases and Shuffle is a data transmission phase. In our setting, we assume that the transmission is operated over a wireless interference network. We demonstrate that, by duplicating the computation work at a cluster of distributed nodes in the Map phase, one can reduce the amount of transmission load required for the Shuffle phase. In this work, we characterize the fundamental tradeoff between computation load and communication load, under the assumption of one-shot linear schemes. The proposed scheme is based on side information cancellation and zero-forcing, and we prove that it is optimal in terms of computation-communication tradeoff. The proposed scheme outperforms the naive TDMA scheme with single node transmission at a time, as well as the coded TDMA scheme that allows coding across data, in terms of the computation-communication tradeoff.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2924621