Sequence Pairs With Asymptotically Optimal Aperiodic Correlation

The Pursley-Sarwate criterion of a pair of finite complex-valued sequences measures the collective smallness of the aperiodic autocorrelations and the aperiodic cross-correlations of the two sequences. It is known that this quantity is always at least 1 with equality if and only if the sequence pair...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-08, Vol.65 (8), p.5233-5238
Hauptverfasser: Gunther, Christian, Schmidt, Kai-Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Pursley-Sarwate criterion of a pair of finite complex-valued sequences measures the collective smallness of the aperiodic autocorrelations and the aperiodic cross-correlations of the two sequences. It is known that this quantity is always at least 1 with equality if and only if the sequence pair is a Golay pair. We exhibit pairs of complex-valued sequences whose entries have unit magnitude for which the Pursley-Sarwate criterion tends to 1 as the sequence length tends to infinity. Our constructions use different carefully chosen Chu sequences.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2906215