Data-Dependent Generalization Bounds for Multi-Class Classification
In this paper, we study data-dependent generalization error bounds that exhibit a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms using an ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-05, Vol.65 (5), p.2995-3021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!