Data-Dependent Generalization Bounds for Multi-Class Classification
In this paper, we study data-dependent generalization error bounds that exhibit a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms using an ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-05, Vol.65 (5), p.2995-3021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study data-dependent generalization error bounds that exhibit a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms using an arbitrary norm as the regularizer. Key to our analysis is new structural results for multi-class Gaussian complexities and empirical ℓ ∞ -norm covering numbers, which exploit the Lipschitz continuity of the loss function with respect to the ℓ 2 - and ℓ ∞ -norm, respectively. We establish data-dependent error bounds in terms of the complexities of a linear function class defined on a finite set induced by training examples, for which we show tight lower and upper bounds. We apply the results to several prominent multi-class learning machines and show a tighter dependency on the number of classes than the state of the art. For instance, for the multi-class support vector machine of Crammer and Singer (2002), we obtain a data-dependent bound with a logarithmic dependency, which is a significant improvement of the previous square-root dependency. The experimental results are reported to verify the effectiveness of our theoretical findings. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2019.2893916 |