Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty
In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-11, Vol.62 (11), p.6594-6608 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6608 |
---|---|
container_issue | 11 |
container_start_page | 6594 |
container_title | IEEE transactions on information theory |
container_volume | 62 |
creator | Molloy, Timothy L. Ford, Jason J. |
description | In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule. |
doi_str_mv | 10.1109/TIT.2016.2606425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2016_2606425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7562514</ieee_id><sourcerecordid>4230131851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVJoU7Se6GXhV5yWUfSStrV0ThpE3CI29r0uMzKs7VcW3IkLdT_PjI2OeQ0M8w3w8x7hHxhdMwY1beLx8WYU6bGXFEluPxARkzKutRKigsyopQ1pRai-UQuY9zkUkjGRyRM4mG3Tz5ZUzxZZ3fwv_jluyGm4udgzT_MyXQN7i8Wd5jQJOtd0fuQqz26FbpU_E7erCEeN8yDNxgjxuKPTetiDgF2mELuLJ3BkMC6dLgmH3vYRvx8jldk-f1-MX0oZ88_HqeTWWlEpVK5gpVCkFor1klRcV6zCkB2GgxroGG1VhQ7IbSmQgDroev7lZBc8g66htLqityc9u6DfxnyI-3ORoPbLTj0Q2xZI2Wlslo6o9_eoRs_BJevy1TFdU0bpTJFT5QJPsaAfbsPWbBwaBltjya02YT2aEJ7NiGPfD2NWER8w2upuGSiegUE8oP1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832970866</pqid></control><display><type>article</type><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><source>IEEE Electronic Library (IEL)</source><creator>Molloy, Timothy L. ; Ford, Jason J.</creator><creatorcontrib>Molloy, Timothy L. ; Ford, Jason J.</creatorcontrib><description>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2606425</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Bayes methods ; Bayesian analysis ; Change detection ; CUSUM test ; Delays ; minimax robustness ; Minimax technique ; Parameter robustness ; Parameters ; Quickest change detection ; Random variables ; Robustness ; Shiryaev test ; Simulation ; Stochastic models ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on information theory, 2016-11, Vol.62 (11), p.6594-6608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</citedby><cites>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</cites><orcidid>0000-0002-6797-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7562514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7562514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</description><subject>Asymptotic properties</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Change detection</subject><subject>CUSUM test</subject><subject>Delays</subject><subject>minimax robustness</subject><subject>Minimax technique</subject><subject>Parameter robustness</subject><subject>Parameters</subject><subject>Quickest change detection</subject><subject>Random variables</subject><subject>Robustness</subject><subject>Shiryaev test</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFrGzEQhUVJoU7Se6GXhV5yWUfSStrV0ThpE3CI29r0uMzKs7VcW3IkLdT_PjI2OeQ0M8w3w8x7hHxhdMwY1beLx8WYU6bGXFEluPxARkzKutRKigsyopQ1pRai-UQuY9zkUkjGRyRM4mG3Tz5ZUzxZZ3fwv_jluyGm4udgzT_MyXQN7i8Wd5jQJOtd0fuQqz26FbpU_E7erCEeN8yDNxgjxuKPTetiDgF2mELuLJ3BkMC6dLgmH3vYRvx8jldk-f1-MX0oZ88_HqeTWWlEpVK5gpVCkFor1klRcV6zCkB2GgxroGG1VhQ7IbSmQgDroev7lZBc8g66htLqityc9u6DfxnyI-3ORoPbLTj0Q2xZI2Wlslo6o9_eoRs_BJevy1TFdU0bpTJFT5QJPsaAfbsPWbBwaBltjya02YT2aEJ7NiGPfD2NWER8w2upuGSiegUE8oP1</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Molloy, Timothy L.</creator><creator>Ford, Jason J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid></search><sort><creationdate>20161101</creationdate><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><author>Molloy, Timothy L. ; Ford, Jason J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Change detection</topic><topic>CUSUM test</topic><topic>Delays</topic><topic>minimax robustness</topic><topic>Minimax technique</topic><topic>Parameter robustness</topic><topic>Parameters</topic><topic>Quickest change detection</topic><topic>Random variables</topic><topic>Robustness</topic><topic>Shiryaev test</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molloy, Timothy L.</au><au>Ford, Jason J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>62</volume><issue>11</issue><spage>6594</spage><epage>6608</epage><pages>6594-6608</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2606425</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2016-11, Vol.62 (11), p.6594-6608 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2016_2606425 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic properties Bayes methods Bayesian analysis Change detection CUSUM test Delays minimax robustness Minimax technique Parameter robustness Parameters Quickest change detection Random variables Robustness Shiryaev test Simulation Stochastic models Stochastic processes Uncertainty |
title | Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Minimax%20Robust%20Quickest%20Change%20Detection%20for%20Dependent%20Stochastic%20Processes%20With%20Parametric%20Uncertainty&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Molloy,%20Timothy%20L.&rft.date=2016-11-01&rft.volume=62&rft.issue=11&rft.spage=6594&rft.epage=6608&rft.pages=6594-6608&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2606425&rft_dat=%3Cproquest_RIE%3E4230131851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832970866&rft_id=info:pmid/&rft_ieee_id=7562514&rfr_iscdi=true |