Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty

In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-11, Vol.62 (11), p.6594-6608
Hauptverfasser: Molloy, Timothy L., Ford, Jason J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6608
container_issue 11
container_start_page 6594
container_title IEEE transactions on information theory
container_volume 62
creator Molloy, Timothy L.
Ford, Jason J.
description In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.
doi_str_mv 10.1109/TIT.2016.2606425
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2016_2606425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7562514</ieee_id><sourcerecordid>4230131851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVJoU7Se6GXhV5yWUfSStrV0ThpE3CI29r0uMzKs7VcW3IkLdT_PjI2OeQ0M8w3w8x7hHxhdMwY1beLx8WYU6bGXFEluPxARkzKutRKigsyopQ1pRai-UQuY9zkUkjGRyRM4mG3Tz5ZUzxZZ3fwv_jluyGm4udgzT_MyXQN7i8Wd5jQJOtd0fuQqz26FbpU_E7erCEeN8yDNxgjxuKPTetiDgF2mELuLJ3BkMC6dLgmH3vYRvx8jldk-f1-MX0oZ88_HqeTWWlEpVK5gpVCkFor1klRcV6zCkB2GgxroGG1VhQ7IbSmQgDroev7lZBc8g66htLqityc9u6DfxnyI-3ORoPbLTj0Q2xZI2Wlslo6o9_eoRs_BJevy1TFdU0bpTJFT5QJPsaAfbsPWbBwaBltjya02YT2aEJ7NiGPfD2NWER8w2upuGSiegUE8oP1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832970866</pqid></control><display><type>article</type><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><source>IEEE Electronic Library (IEL)</source><creator>Molloy, Timothy L. ; Ford, Jason J.</creator><creatorcontrib>Molloy, Timothy L. ; Ford, Jason J.</creatorcontrib><description>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2606425</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Bayes methods ; Bayesian analysis ; Change detection ; CUSUM test ; Delays ; minimax robustness ; Minimax technique ; Parameter robustness ; Parameters ; Quickest change detection ; Random variables ; Robustness ; Shiryaev test ; Simulation ; Stochastic models ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on information theory, 2016-11, Vol.62 (11), p.6594-6608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</citedby><cites>FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</cites><orcidid>0000-0002-6797-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7562514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7562514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</description><subject>Asymptotic properties</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Change detection</subject><subject>CUSUM test</subject><subject>Delays</subject><subject>minimax robustness</subject><subject>Minimax technique</subject><subject>Parameter robustness</subject><subject>Parameters</subject><subject>Quickest change detection</subject><subject>Random variables</subject><subject>Robustness</subject><subject>Shiryaev test</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFrGzEQhUVJoU7Se6GXhV5yWUfSStrV0ThpE3CI29r0uMzKs7VcW3IkLdT_PjI2OeQ0M8w3w8x7hHxhdMwY1beLx8WYU6bGXFEluPxARkzKutRKigsyopQ1pRai-UQuY9zkUkjGRyRM4mG3Tz5ZUzxZZ3fwv_jluyGm4udgzT_MyXQN7i8Wd5jQJOtd0fuQqz26FbpU_E7erCEeN8yDNxgjxuKPTetiDgF2mELuLJ3BkMC6dLgmH3vYRvx8jldk-f1-MX0oZ88_HqeTWWlEpVK5gpVCkFor1klRcV6zCkB2GgxroGG1VhQ7IbSmQgDroev7lZBc8g66htLqityc9u6DfxnyI-3ORoPbLTj0Q2xZI2Wlslo6o9_eoRs_BJevy1TFdU0bpTJFT5QJPsaAfbsPWbBwaBltjya02YT2aEJ7NiGPfD2NWER8w2upuGSiegUE8oP1</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Molloy, Timothy L.</creator><creator>Ford, Jason J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid></search><sort><creationdate>20161101</creationdate><title>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</title><author>Molloy, Timothy L. ; Ford, Jason J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dad6ea59961b54322713aa5b9ac18a817960eb4499044a1fabffd45252bab8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Change detection</topic><topic>CUSUM test</topic><topic>Delays</topic><topic>minimax robustness</topic><topic>Minimax technique</topic><topic>Parameter robustness</topic><topic>Parameters</topic><topic>Quickest change detection</topic><topic>Random variables</topic><topic>Robustness</topic><topic>Shiryaev test</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molloy, Timothy L.</au><au>Ford, Jason J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>62</volume><issue>11</issue><spage>6594</spage><epage>6608</epage><pages>6594-6608</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2606425</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-11, Vol.62 (11), p.6594-6608
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2016_2606425
source IEEE Electronic Library (IEL)
subjects Asymptotic properties
Bayes methods
Bayesian analysis
Change detection
CUSUM test
Delays
minimax robustness
Minimax technique
Parameter robustness
Parameters
Quickest change detection
Random variables
Robustness
Shiryaev test
Simulation
Stochastic models
Stochastic processes
Uncertainty
title Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Minimax%20Robust%20Quickest%20Change%20Detection%20for%20Dependent%20Stochastic%20Processes%20With%20Parametric%20Uncertainty&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Molloy,%20Timothy%20L.&rft.date=2016-11-01&rft.volume=62&rft.issue=11&rft.spage=6594&rft.epage=6608&rft.pages=6594-6608&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2606425&rft_dat=%3Cproquest_RIE%3E4230131851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832970866&rft_id=info:pmid/&rft_ieee_id=7562514&rfr_iscdi=true