Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty

In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-11, Vol.62 (11), p.6594-6608
Hauptverfasser: Molloy, Timothy L., Ford, Jason J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the problem of quickly detecting an unknown change in the conditional densities of a dependent stochastic process. In contrast to the existing quickest change detection approaches for dependent stochastic processes, we propose minimax robust versions of the popular Lorden, Pollak, and Bayesian criteria for when there is uncertainty about the parameter of the post-change conditional densities. Under an information-theoretic Pythagorean inequality condition on the uncertainty set of possible post-change parameters, we identify asymptotic minimax robust solutions to our Lorden, Pollak, and Bayesian problems. Finally, through simulation examples, we illustrate that asymptotically minimax robust rules can provide detection performance comparable to the popular (but more computationally expensive) generalized likelihood ratio rule.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2606425