From Denoising to Compressed Sensing

A denoising algorithm seeks to remove noise, errors, or perturbations from a signal. Extensive research has been devoted to this arena over the last several decades, and as a result, todays denoisers can effectively remove large amounts of additive white Gaussian noise. A compressed sensing (CS) rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-09, Vol.62 (9), p.5117-5144
Hauptverfasser: Metzler, Christopher A., Maleki, Arian, Baraniuk, Richard G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A denoising algorithm seeks to remove noise, errors, or perturbations from a signal. Extensive research has been devoted to this arena over the last several decades, and as a result, todays denoisers can effectively remove large amounts of additive white Gaussian noise. A compressed sensing (CS) reconstruction algorithm seeks to recover a structured signal acquired using a small number of randomized measurements. Typical CS reconstruction algorithms can be cast as iteratively estimating a signal from a perturbed observation. This paper answers a natural question: How can one effectively employ a generic denoiser in a CS reconstruction algorithm? In response, we develop an extension of the approximate message passing (AMP) framework, called denoising-based AMP (D-AMP), that can integrate a wide class of denoisers within its iterations. We demonstrate that, when used with a high-performance denoiser for natural images, D-AMP offers the state-of-the-art CS recovery performance while operating tens of times faster than competing methods. We explain the exceptional performance of D-AMP by analyzing some of its theoretical features. A key element in D-AMP is the use of an appropriate Onsager correction term in its iterations, which coerces the signal perturbation at each iteration to be very close to the white Gaussian noise that denoisers are typically designed to remove.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2556683