On Optimal Nonlinear Systematic Codes
Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-06, Vol.62 (6), p.3103-3112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3112 |
---|---|
container_issue | 6 |
container_start_page | 3103 |
container_title | IEEE transactions on information theory |
container_volume | 62 |
creator | Guerrini, Eleonora Meneghetti, Alessio Sala, Massimiliano |
description | Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes. |
doi_str_mv | 10.1109/TIT.2016.2553142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2016_2553142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7451245</ieee_id><sourcerecordid>4081324811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACIKk7uxXkmMpagvFHqznZZNMcEs-6m5a6L93S0oPnoaB5x3eeQi5BzoBoNnrerGeMApqwqTkINgFGYGUSZwpKS7JiFJI40yI9JrceL8Jq5DARuRp1UarbW8bU0efXVvbFo2Lvg6-x8b0tohmXYn-llxVpvZ4d5pj8v3-tp7N4-XqYzGbLuOCS9nHphSClSwv0BTMlFlCqeAS8pSFKqoqM-RAS4F5rgoulALKKoUGpQKONGF8TF6Guz-m1lsXWrmD7ozV8-lS19Y1jabAmUyB7yHQzwO9dd3vDn2vG-sLrGvTYrfzGlImRRqe5gF9_Iduup1rwy8akkxIphhXgaIDVbjOe4fVuQNQfbSsg2V9tKxPlkPkYYhYRDzjyVGukPwPDKp0yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794526236</pqid></control><display><type>article</type><title>On Optimal Nonlinear Systematic Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</creator><creatorcontrib>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</creatorcontrib><description>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2553142</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Branch & bound algorithms ; Coding theory ; Combinatorial analysis ; Combinatorics ; Computer Science ; Construction ; Decoding ; Error correction codes ; Information Theory ; Linear codes ; Mathematics ; Nonlinear systems ; Nonlinearity ; Optimization ; Parameter identification ; Systematics</subject><ispartof>IEEE transactions on information theory, 2016-06, Vol.62 (6), p.3103-3112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</cites><orcidid>0000-0002-5159-7252 ; 0009-0001-4851-5789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7451245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7451245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01325813$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Meneghetti, Alessio</creatorcontrib><creatorcontrib>Sala, Massimiliano</creatorcontrib><title>On Optimal Nonlinear Systematic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</description><subject>Binary codes</subject><subject>Branch & bound algorithms</subject><subject>Coding theory</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Decoding</subject><subject>Error correction codes</subject><subject>Information Theory</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Systematics</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACIKk7uxXkmMpagvFHqznZZNMcEs-6m5a6L93S0oPnoaB5x3eeQi5BzoBoNnrerGeMApqwqTkINgFGYGUSZwpKS7JiFJI40yI9JrceL8Jq5DARuRp1UarbW8bU0efXVvbFo2Lvg6-x8b0tohmXYn-llxVpvZ4d5pj8v3-tp7N4-XqYzGbLuOCS9nHphSClSwv0BTMlFlCqeAS8pSFKqoqM-RAS4F5rgoulALKKoUGpQKONGF8TF6Guz-m1lsXWrmD7ozV8-lS19Y1jabAmUyB7yHQzwO9dd3vDn2vG-sLrGvTYrfzGlImRRqe5gF9_Iduup1rwy8akkxIphhXgaIDVbjOe4fVuQNQfbSsg2V9tKxPlkPkYYhYRDzjyVGukPwPDKp0yQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Guerrini, Eleonora</creator><creator>Meneghetti, Alessio</creator><creator>Sala, Massimiliano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5159-7252</orcidid><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid></search><sort><creationdate>20160601</creationdate><title>On Optimal Nonlinear Systematic Codes</title><author>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binary codes</topic><topic>Branch & bound algorithms</topic><topic>Coding theory</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Decoding</topic><topic>Error correction codes</topic><topic>Information Theory</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Systematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Meneghetti, Alessio</creatorcontrib><creatorcontrib>Sala, Massimiliano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guerrini, Eleonora</au><au>Meneghetti, Alessio</au><au>Sala, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Optimal Nonlinear Systematic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>62</volume><issue>6</issue><spage>3103</spage><epage>3112</epage><pages>3103-3112</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2553142</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5159-7252</orcidid><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2016-06, Vol.62 (6), p.3103-3112 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2016_2553142 |
source | IEEE Electronic Library (IEL) |
subjects | Binary codes Branch & bound algorithms Coding theory Combinatorial analysis Combinatorics Computer Science Construction Decoding Error correction codes Information Theory Linear codes Mathematics Nonlinear systems Nonlinearity Optimization Parameter identification Systematics |
title | On Optimal Nonlinear Systematic Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Optimal%20Nonlinear%20Systematic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Guerrini,%20Eleonora&rft.date=2016-06-01&rft.volume=62&rft.issue=6&rft.spage=3103&rft.epage=3112&rft.pages=3103-3112&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2553142&rft_dat=%3Cproquest_RIE%3E4081324811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794526236&rft_id=info:pmid/&rft_ieee_id=7451245&rfr_iscdi=true |