On Optimal Nonlinear Systematic Codes

Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-06, Vol.62 (6), p.3103-3112
Hauptverfasser: Guerrini, Eleonora, Meneghetti, Alessio, Sala, Massimiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3112
container_issue 6
container_start_page 3103
container_title IEEE transactions on information theory
container_volume 62
creator Guerrini, Eleonora
Meneghetti, Alessio
Sala, Massimiliano
description Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
doi_str_mv 10.1109/TIT.2016.2553142
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2016_2553142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7451245</ieee_id><sourcerecordid>4081324811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACIKk7uxXkmMpagvFHqznZZNMcEs-6m5a6L93S0oPnoaB5x3eeQi5BzoBoNnrerGeMApqwqTkINgFGYGUSZwpKS7JiFJI40yI9JrceL8Jq5DARuRp1UarbW8bU0efXVvbFo2Lvg6-x8b0tohmXYn-llxVpvZ4d5pj8v3-tp7N4-XqYzGbLuOCS9nHphSClSwv0BTMlFlCqeAS8pSFKqoqM-RAS4F5rgoulALKKoUGpQKONGF8TF6Guz-m1lsXWrmD7ozV8-lS19Y1jabAmUyB7yHQzwO9dd3vDn2vG-sLrGvTYrfzGlImRRqe5gF9_Iduup1rwy8akkxIphhXgaIDVbjOe4fVuQNQfbSsg2V9tKxPlkPkYYhYRDzjyVGukPwPDKp0yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794526236</pqid></control><display><type>article</type><title>On Optimal Nonlinear Systematic Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</creator><creatorcontrib>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</creatorcontrib><description>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2553142</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Branch &amp; bound algorithms ; Coding theory ; Combinatorial analysis ; Combinatorics ; Computer Science ; Construction ; Decoding ; Error correction codes ; Information Theory ; Linear codes ; Mathematics ; Nonlinear systems ; Nonlinearity ; Optimization ; Parameter identification ; Systematics</subject><ispartof>IEEE transactions on information theory, 2016-06, Vol.62 (6), p.3103-3112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</cites><orcidid>0000-0002-5159-7252 ; 0009-0001-4851-5789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7451245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7451245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01325813$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Meneghetti, Alessio</creatorcontrib><creatorcontrib>Sala, Massimiliano</creatorcontrib><title>On Optimal Nonlinear Systematic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</description><subject>Binary codes</subject><subject>Branch &amp; bound algorithms</subject><subject>Coding theory</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Decoding</subject><subject>Error correction codes</subject><subject>Information Theory</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Systematics</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACIKk7uxXkmMpagvFHqznZZNMcEs-6m5a6L93S0oPnoaB5x3eeQi5BzoBoNnrerGeMApqwqTkINgFGYGUSZwpKS7JiFJI40yI9JrceL8Jq5DARuRp1UarbW8bU0efXVvbFo2Lvg6-x8b0tohmXYn-llxVpvZ4d5pj8v3-tp7N4-XqYzGbLuOCS9nHphSClSwv0BTMlFlCqeAS8pSFKqoqM-RAS4F5rgoulALKKoUGpQKONGF8TF6Guz-m1lsXWrmD7ozV8-lS19Y1jabAmUyB7yHQzwO9dd3vDn2vG-sLrGvTYrfzGlImRRqe5gF9_Iduup1rwy8akkxIphhXgaIDVbjOe4fVuQNQfbSsg2V9tKxPlkPkYYhYRDzjyVGukPwPDKp0yQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Guerrini, Eleonora</creator><creator>Meneghetti, Alessio</creator><creator>Sala, Massimiliano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5159-7252</orcidid><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid></search><sort><creationdate>20160601</creationdate><title>On Optimal Nonlinear Systematic Codes</title><author>Guerrini, Eleonora ; Meneghetti, Alessio ; Sala, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ad442d2bceac2ad97004351b821556fd9e310d4ebb6c3466102f6eae5613e0723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binary codes</topic><topic>Branch &amp; bound algorithms</topic><topic>Coding theory</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Decoding</topic><topic>Error correction codes</topic><topic>Information Theory</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Systematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Meneghetti, Alessio</creatorcontrib><creatorcontrib>Sala, Massimiliano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guerrini, Eleonora</au><au>Meneghetti, Alessio</au><au>Sala, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Optimal Nonlinear Systematic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>62</volume><issue>6</issue><spage>3103</spage><epage>3112</epage><pages>3103-3112</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2553142</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5159-7252</orcidid><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-06, Vol.62 (6), p.3103-3112
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2016_2553142
source IEEE Electronic Library (IEL)
subjects Binary codes
Branch & bound algorithms
Coding theory
Combinatorial analysis
Combinatorics
Computer Science
Construction
Decoding
Error correction codes
Information Theory
Linear codes
Mathematics
Nonlinear systems
Nonlinearity
Optimization
Parameter identification
Systematics
title On Optimal Nonlinear Systematic Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Optimal%20Nonlinear%20Systematic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Guerrini,%20Eleonora&rft.date=2016-06-01&rft.volume=62&rft.issue=6&rft.spage=3103&rft.epage=3112&rft.pages=3103-3112&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2553142&rft_dat=%3Cproquest_RIE%3E4081324811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794526236&rft_id=info:pmid/&rft_ieee_id=7451245&rfr_iscdi=true